概率計算公式有哪些?
如何計算概率,公式是什麼
性質1.P(Φ)=0.
性質2.(有限可加性)當n個事件A1,…,An兩兩互不相容時: P(A1∪...∪An)=P(A1)+...+P(An).
性質3.對於任意一個事件A:P(A)=1-P(非A).
性質4.當事件A,B滿足A包含於B時:P(B-A)=P(B)-P(A),P(A)≤P(B).
性質5.對於任意一個事件A,P(A)≤1.
性質6.對任意兩個事件A和B,P(B-A)=P(B)-P(AB).
性質7.(加法公式)對任意兩個事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B).
有什麼軟件是算概率的
有,最方便的就是Excel,它整合了大量的概率公式,在公式“統計”裡面找,有使用說明。比如
階乘:Fact(3)=3*2*1=6
組合:Combin(4,2)=6
排列:Permut(4,2)=12
還有超幾何分佈概率公式等。
數學中概率計算的公式都有哪些?
1.排列及計算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(規定0!=1).
2.組合及計算公式
從n個不同元素中,任取m(m≤n)個元素併成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號
c(n,m) 表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為
n!/(n1!*n2!*...*nk!).
k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標) =n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標) =1 ;Cn1(n為下標1為上標)=n;Cnm=Cnn-m