怎麼判斷函數可導?
函數可導不可導怎麼判斷
函數的條件是在定義域內,必須是連續的.可導函數都是連續的,但是連續函數不一定是可導函數.
例如,y=|x|,在x=0上不可導.即使這個禒數是連續的,但是lim(x趨向0+)y'=1,lim(x趨向0-)y'=-1,兩個值不相等,所以不是可導函數。
也就是說在每一個點上導數的左右極限都相等的函數是可導函數,反之不是
如何判斷函數的可導性
首先判斷函數在這個點x0是否有定義,即f(x0)是否存在;其次判斷f(x0)是否連續,即f(x0-), f(x0+),
f(x0)三者是否相等;再次判斷函數在x0的左右導數是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都滿足了,則函數在x0處才可導。
函數可導的條件:
如果一個函數的定義域為全體實數,即函數在其上都有定義,那麼該函數是不是在定義域上處處可導呢?答案是否定的。函數在定義域中一點可導需要一定的條
件:函數在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的一個充要條件(極限存在,它的左右極限存在且相等)推導而來。
可導的函數一定連續;不連續的函數一定不可導。
可導,即設y=f(x)是一個單變量函數, 如果y在x=x0處存在導數y′=f′(x),則稱y在x=x[0]處可導。
如果一個函數在x0處可導,那麼它一定在x0處是連續函數。
函數可導定義:(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。
(2)若對於區間(a,b)上任意一點(m,f(m))均可導,則稱f(x)在(a,b)上可導。