下學期九年級數學期中考試題
我們大家在看清楚數學的時候我們我們多做一下題哦,今天小編給大家分享的是九年級數學,就給大家學習一下哦
九年級數學下冊期中考試題
一、選擇題每小題3分,共30分1.下列各點中,在函式y=-8x圖象上的是
A.-2,4 B.2,4 C.-2,-4 D.8,1
2.已知△ABC∽△DEF,若△ABC與△DEF的相似比為3∶4,則△ABC與△DEF的面積比為
A.4∶3 B.3∶4 C.16∶9 D.9∶16
3.已知A1,y1、B3,y2是反比例函式y=9x圖象上的兩點,則y1、y2的大小關係是
A.y1>y2 B.y1=y2 C.y1
4.如圖,E是▱ABCD的邊BC的延長線上一點,連線AE交CD於F,則圖中共有相似三角形
A.4對 B.3對 C.2對 D.1對
第4題圖 第5題圖
5.如圖,點A是反比例函式y=2xx>0圖象上 任意一點,AB⊥y軸於B,點C是x軸上的動點,則△ABC的面積為
A.1 B.2 C.4 D.不能確定
6.如圖,雙曲線y=kx與直線y=-12x交於A、B兩點,且A-2,m,則點B的座標是
A.2,-1 B.1,-2 C.12,-1 D.-1,12
第6題圖 第7題圖
7.如圖,在矩形ABCD中,AB=2,BC=3.若點E是邊CD的中點,連線AE,過點B作BF⊥AE交AE於點F,則BF的長為
A.3102 B.3105 C.105 D.355
8.如圖,在△ABC中,點E、F分別在邊AB、AC上,EF∥BC,AFFC=12,△CEF的面積為2,則△EBC的面積為
A.4 B.6 C.8 D.12
第8題圖 第9題圖
9.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函式y=1x的圖象上.若點B在反比例函式y=kx的圖象上,則k的值為
A.-4 B.4 C.-2 D.2
10.如圖,在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點H為垂足.設AB=x,AD=y,則y關於x的函式關係用圖象大致可以表示為
二、填空題每小題3分,共24分
11.反比例函式y=kx的圖象經過點M-2,1,則k=________.
12.如圖,在△ABC中,DE∥BC,分別交AB,AC於點D,E.若AD=3,DB=2,BC=6,則DE的長為________.
第12題圖 第14題圖 第15題圖
13.已知反比例函式y=m+2x的圖象在第二、四象限,則m的取值範圍是________.
14.如圖,正比例函式y1=k1x與反比例函式y2=k2x的圖象交於A、B兩點,根據圖象可直接寫出當y1>y2時,x的取值範圍是_ _______________.
15.如圖,甲、乙兩盞路燈底部間的距離是30米,一天晚上,當小華走到距路燈乙底部5米處時,發現自己的身影頂部正好接觸路燈乙的底部.已知小華的身高為1.5米,那麼路燈甲的高為________米.
16.如圖,等腰三角形OBA和等腰三角形ACD是位似圖形,則這兩個等腰三角形位似中心的座標是________.
第 16題 圖 第17題圖 第18題圖
17.如圖,在平行四邊形ABCD中,點E是邊AD的中點,連線EC交對角線BD於點F,若S△DEC=3,則S△BCF=________.
18.如圖,點E,F在函式y=2x的圖象上,直線EF分別與x軸、y軸交於點A、B,且BE∶BF=1∶3,則△EOF的面積是________.
三、解答題共66分
19.8分在平面直角座標系中,已知反比例函式y=kx的圖象經過點A1,3.
1試確定此反比例函式的解析式;
2點O是座標原點,將線段OA繞O點順時針旋轉30°得到線段OB,判斷點B是否在此反比例函式的圖象上,並說明理由.
20.8分如圖,在平面直角座標系中,A6,0,B6,3,畫出△ABO的所有以原點O為位似中心的△CDO,且△CDO與△ABO的相似比為13,並寫出C、D的座標.
21.8分如圖,小明同學用自制的直角三角形紙板DEF測量樹AB的高度,他調整自己的位置,設法使斜邊DF保持水平,並且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.
22.8分如圖,AB是⊙O的直徑,PB與⊙O相切於點B,連線PA交⊙O於點C,連線BC.
1求證:∠BAC=∠CBP;
2求證:PB2=PC·PA.
23.10分如圖,在平面直角座標系xOy中,反比例函式y=mx的圖象與一次函式y=kx-2的圖象交點為A3,2,Bx,y.
1求反比例函式與一次函式的解 析式及B點座標;
2若C是y軸上的點,且滿足△ABC的面積為10,求C點座標.
24.12分如圖,分別位於反比例函式y=1x,y=kx在第一象限圖象上的兩點A,B,與原點O在同一直線上,且OAOB=13.
1求反比例 函式y=kx的表示式;
2過點A作x軸的平行線交y=kx的圖象於點C,連線BC,求△ABC的面積.
25.12分正方形ABCD的邊長為6cm,點E,M分別是線段BD,AD上的動點,連線AE並延長,交邊BC於F,過M作MN⊥AF,垂足為H,交邊AB於點N.
1如圖①,若點M與點D重合,求證:AF=MN;
2如圖②,若點M從點D出發,以1cm/s的速度沿DA向點A運動,同時點E從點B出發,以2cm/s的速度沿BD向點D運動,運動時間為ts.
①設BF=ycm,求y關於t的函式表示式;
②當BN=2AN時,連線FN,求FN的長.
參考答案與解析
1.A 2.D 3.A 4.B 5.A 6.A 7.B 8.B
9.A 解析:如圖,過點A,B作AC⊥x軸,BD⊥x軸,分別於C,D.設點A的座標是m,n,則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴DBOC=ODAC=OBOA.∵OB=2OA,∴BD=2m,OD=2n.∵點A在反比例函式y=1x的圖象上,∴mn=1.∵點B在反比例函式y=kx的圖象上,B點的座標是-2n,2m,∴k=-2n·2m=-4mn=-4.故選A.
10.D 解析:∵DH垂直平分AC,AC=4,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH.∵CD∥ AB,∴∠DCA=∠BAC,∴∠DAH=∠BAC.又∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴ADAC=AHAB,∴y4=2x,∴y=8x.∵AB<4,故選d.< p="">
11.-2 12.185 13.m<-2
14.-11 15.9 16.-2,0
17.4 解析:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴EFCF=DEBC,S△DEFS△BCF=DEBC2.∵E是邊AD的中點,∴DE=12AD=12BC,∴EFCF=DEBC=12,∴S△DEF=13S△DEC=1,S△DEFS△BCF=14,∴S△BCF=4.
18.83 解析:作EP⊥y軸於P,EC⊥x軸於C,FD⊥x軸於D,FH⊥y軸於H,如圖所示.∵EP⊥y軸,FH⊥y軸,∴EP∥FH,∴△BPE∽△BHF,∴PEHF=BEBF=13,即HF=3PE.設E點座標為t,2t,則F點的座標為3t,23t.∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=12×2=1,∴S△OEF=S梯形ECDF=1223t+2t3t-t=83.故答案為83.
19.解:1y=3x.4分
2點B在此反比例函式的圖象上.5分理由:由 題意可得OB=OA=12+32=2.過點B作BC⊥x軸,垂足為點C,則∠AOC=60°,∠AOB=30°,∴∠BOC=30°,∴BC=1,OC=3,∴點B的座標為3,1.∵1=33,∴點B在此反比例函式的圖象上.8分
20.解:如圖所示,4分C點的座標為2,0或-2,0,D點的座標為2,1或-2,-1.8分
21.解:易證△DEF∽△DCB,3分則DECD=EFBC,即0.48=0.2BC,6分∴BC=4m,∴AB=BC+AC=4+1.5=5.5m.7分
答:樹AB的高度為5.5m.8分
22.證明:1∵AB是⊙O的直徑,∴∠ACB=90°,∴∠BAC +∠ABC=90°.2分∵PB與⊙O相切於點B,∴ ∠CBP+∠ABC=90°,∴∠BAC=∠CBP.4分
2∵∠BAC=∠CBP,∠P =∠P,∴△PBC∽△PAB.6分∴PBAP=PCBP,∴PB2=PC·PA.8分
23.解:1∵點A3,2在反比例函式y=mx和一次函式y=kx-2的圖象上,∴2=m3,2=k3-2,解得m=6,k=2,∴反比例函式的解析式為y=6x,一次函式的解析式為y=2x-4.3分∵點B是一次函式與反比例函式的另一個交點,∴6x=2x-4,解得x1=3,x2=-1,∴B點的座標為-1 ,-6.5分
2設點M是一次函式y=2x-4的圖象與y軸的交點,則點M的座標為0,-4.設C點的座標為0,yc,由題意知12×3×|yc--4|+12×1×|yc--4|=10,∴|yc+4|=5.8分當yc+4≥0時,yc+4=5,解得yc=1;當yc+4<0時,yc+4=-5,解得yc=-9,∴C點的座標為0,1或0,-9.10分
24.解:1作AE,BF分別垂直於x軸,垂足為E,F,∴AE∥BF,∴△AOE∽△BOF,∴OEOF=EAFB=OAOB=13.2分由點A在函式y=1x的圖象上,設A的座標是m,1m,∴OEOF=mOF=13,EAFB=1mFB=13,∴OF=3m,BF=3m,即B的座標是3m,3m.5分又點B在y=kx的圖象上,∴3m=k3m,解得k=9,則反比例函式y=kx的表示式是y=9x.7分
2由1可知Am,1m,B3m,3m,又已知過A作x軸的平行線交y=9x的圖象於點C,∴C的縱座標是1m.9分把y= 1m代入y=9x得x=9m,∴C的座標是9m,1m,∴AC=9m-m=8m.∴S△ABC=12×8m×3m-1m=8.12分
25.1證明:∵四邊形ABCD為正方形,∴AD=AB,∠DAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NDA+∠ANH=90°,∴∠NAH=∠NDA,∴△ABF≌△MAN,∴AF=MN.4分
2解:①∵四邊形ABCD為正方形,∴AD∥BF,∴∠ADE=∠FBE.∵∠AED=∠BEF,∴△EBF∽△EDA,∴BFAD=BEED.∵四邊形ABCD為正方形,∴AD=DC=CB=6cm,∴BD=62cm.∵點E從點B出發,以2cm/s的速度沿BD向點D運動,運動時間為ts,∴BE=2tcm,DE=62-2tcm,∴y6=2t62-2t,∴y=6t6-t.8分
②∵四邊形ABCD為正方形,∴∠MAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NMA+∠ANH=90°,∴∠NAH=∠NMA.∴△ABF∽△MAN,∴ANAM=BFAB.∵BN=2AN,AB=6 cm,∴AN=2cm.∴26-t=6t6-t6,∴t=2,∴BF=6×26-2=3cm.又∵BN=4cm,∴FN=32+42=5cm.12分
九年級下數學期中測試帶答案
一、選擇題每小題3分,共30分
1.若函式y=axa2-2是二次函式且圖象開口向上,則a=B
A.-2 B.2 C.2或-2 D.1
2.下列二次函式中,圖象以直線x=2為對稱軸、且經過點0,1的是C
A.y=x-22+1 B.y=x+22+1
C.y=x-22-3 D.y=x+22-3
3.如圖,在半徑為5 cm的⊙O中,弦AB=6 cm,OC⊥AB於點C,則OC=B
A.3 cm B.4 cm C.5 cm D.6 cm
4.如圖,BC是⊙O的直徑,點A是⊙O上的一點,∠OAC=32°,則∠B的度數是A
A.58° B.60° C.64° D.68°
5.如圖為座標平面上二次函式y=ax2+bx+c的圖象,且此圖象經過-1,1,2,-1兩點.下列關於此二次函式的敘述中正確的是D
A.y的最大值小於0
B.當x=0時,y的值大於1
C.當x=1時,y的值大於1
D.當x=3時,y的值小於0
6.如圖,點B,C,D在⊙O上.若∠BCD=130°,則∠BOD的度數是D
A.50° B.60° C.80° D.100°
7.二次函式y=ax2+bx+ca≠0的圖象如圖所示,則下列結論中正確的是D
A.c>-1 B.b>0
C.2a+b≠0 D.9a+c>3b
8.如圖,CA,CB分別與⊙O相切於點D,B,圓心O在AB上,AB與⊙O的另一交點為E,AE=2,⊙O的半徑為1,則BC的長為A
A.2 B.22 C.22 D.3
9.已知圓內接正三角形的面積為3,則該圓的內接正六邊形的邊心距是B
A.2 B.1 C.3 D.32
10.已知拋物線y=ax-32+254a≠0過點C0,4,頂點為M,與x軸交於A,B兩點.如圖所示以AB為直徑作圓,記作⊙D,下列結論:①拋物線的對稱軸是直線x=3;②點C在⊙D外;③直線CM與⊙D相切.其中正確的有C
A.0個 B.1個 C.2個 D.3個
二、填空題每小題3分,共24分
11.如圖,已知BD是⊙O的直徑,點A,C在⊙O上,AB︵=BC︵,∠AOB=60°,則∠COD的度數是120°.
12.已知拋物線y=x2-3x+m與x軸只有一個公共點,則m=94.
13.已知Rt△ABC的兩直角邊的長分別為6 cm和8 cm,則它的外接圓的半徑為5cm.
14.如果將拋物線y=x2+2x-1向上平移,使它經過點A0,3,那麼所得新拋物線的表示式是y=x2+2x+3.
15.若二次函式y=2x2-3的圖象上有兩個點A1,m,B2,n,則m<�”“=”或“>”
16.如圖,點A,B,D在⊙O上,∠A=25°,OD的延長線交直線BC於點C,且∠OCB=40°,直線BC與⊙O的位置關係為相切.
17.如圖,已知AB是⊙O的一條直徑,延長AB至C點,使AC=3BC,CD與⊙O相切於D點.若CD=3,則劣弧AD的長為23π.
18.如圖,在一個直角三角形的內部作一個矩形ABCD,其中AB和AD分別在兩直角邊上,C點在斜邊上,設矩形的一邊AB=x m,矩形的面積為y m2,則y的最大值為300__m2.
三、解答題共66分
19.6分已知二次函式y=x2+4x.用配方法把該函式化為y=ax-h2+k其中a,h,k都是常數,且a≠0的形式,並指出函式圖象的對稱軸和頂點座標.
解:∵y=x2+4x=x2+4x+4-4=x+22-4,
∴對稱軸為直線x=-2.頂點座標為-2,-4.
20.6分如圖所示,已知△ABC內接於⊙O,AB=AC,∠BOC=120°,延長BO交⊙O於D點.
1試求∠BAD的度數;
2求證:△ABC為等邊三角形.
解:1∵BD是⊙O的直徑,
∴∠BAD=90°直徑所對的圓周角是直角.
2證明:∵∠BOC=120°,
∴∠BAC=12∠BOC=60°.
又∵AB=AC,
∴△ABC是等邊三角形.
21.8分如圖,一次函式y1=kx+1與二次函式y2=ax2+bx-2a≠0交於A,B兩點,且A1,0,拋物線的對稱軸是直線x=-32.
1求k和a,b的值;
2根據圖象求不等式kx+1>ax2+bx-2的解集.
解:1把A1,0代入一次函式表示式,得k+1=0,解得k=-1.
根據題意,得-b2a=-32,a+b-2=0,解得a=12,b=32.
2解方程組y=-x+1,y=12x2+32x-2,得x=1,y=0或x=-6,y=7.
則B的座標是-6,7.
根據圖象可得,不等式kx+1>ax2+bx-2的解集是-6< p="">
22.8分如圖,已知AB為⊙O的直徑,點C,D在⊙O上,且BC=6 cm,AC=8 cm,∠ABD=45°.
1求BD的長;
2求圖中陰影部分的面積.
解:1連線OD.∵AB為⊙O的直徑,∴∠ACB=90°.
∵BC=6 cm,AC=8 cm,∴AB=10 cm.∴OB=5 cm.
∵OD=OB,∴∠ODB=∠ABD=45°.
∴∠BOD=90°.∴BD=OB2+OD2=52 cm.
2S陰影=S扇形ODB-S△OBD
=90360π×52-12×5×5
=25π-504cm2.
23.8分如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y單位:m與飛行時間x單位:s之間具有函式關係y=-5x2+20x,請根據要求解答下列問題:
1在飛行過程中,當小球的飛行高度為15 m時,飛行時間是多少?
2在飛行過程中,小球從飛出到落地所用時間是多少?
3在飛行過程中,小球飛行高度何時最大?最大高度是多少?
解:1當y=15時,15=-5x2+20x,
解得x1=1,x2=3.
答:在飛行過程中,當小球的飛行高度為15 m時,飛行時間是1 s或3 s.
2當y=0時,0=-5x2+20x,
解得x1=0,x2=4,
∵4-0=4,
∴在飛行過程中,小球從飛出到落地所用時間是4 s.
3y=-5x2+20x=-5x-22+20,
∴當x=2時,y取得最大值,此時,y=20.
答:在飛行過程中,小球飛行高度第2 s時最大,最大高度是20 m.
24.8分為了響應政府提出的由中國製造向中國創造轉型的號召,某公司自主設計了一款成本為40元的可控溫杯,並投放市場進行試銷售,經過調查發現該產品每天的銷售量y件與銷售單價x元滿足一次函式關係:y=-10x+1 200.
1求出利潤S元與銷售單價x元之間的關係式;利潤=銷售額-成本
2當銷售單價定為多少時,該公司每天獲取的利潤最大?最大利潤是多少元?
解:1S=yx-40=-10x+1 200x-40=-10x2+1 600x-48 000.
2S=-10x2+1 600x-48 000=-10x-802+16 000,
則當銷售單價定為80元時,工廠每天獲得的利潤最大,最大利潤是16 000元.
25.10分如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB於D點,連線CD.
1求證:∠A=∠BCD;
2若M為線段BC上一點,試問當點M在什麼位置時,直線DM與⊙O相切?並說明理由.
解:1證明:∵AC為⊙O的直徑,∴∠ADC=90°.
∴∠A=90°-∠ACD.
又∵∠ACB=90°,
∴∠BCD=90°-∠ACD.
∴∠A=∠BCD.
2點M為線段BC的中點時,直線DM與⊙O相切.理由如下:
連線OD,作DM⊥OD,交BC於點M,則DM為⊙O的切線.
∵∠ACB=90°,∴∠B=90°-∠A,BC為⊙O的切線.
由切線長定理,得DM=CM.
∴∠MDC=∠BCD.
由1可知∠A=∠BCD,CD⊥AB.
∴∠BDM=90°-∠MDC=90°-∠BCD.
∴∠B=∠BDM.∴DM=BM.
∴CM=BM,
即點M為線段BC的中點.
26.12分如圖,拋物線的頂點為A2,1,且經過原點O,與x軸的另一個交點為B.
1求拋物線的表示式;
2在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
3在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出點N座標;若不存在,說明理由.
解:1設拋物線的表示式為y=ax-22+1.
∵拋物線經過原點0,0,代入,得a=-14.
∴y=-14x-22+1.
2設點Ma,b,S△AOB=12×4×1=2.
則S△MOB=6,∴點M必在x軸下方.
∴12×4×|b|=6.∴b=-3.
將y=-3代入y=-14x-22+1中,得
x=-2或6.
∴點M的座標為-2,-3或6,-3.
3存在.∵△OBN相似於△OAB,
相似比OA∶OB=5∶4,
∴S△AOB∶S△OBN=5∶16.
而S△AOB=2.∴S△OBN=325.
設點Nm,n,點N在x軸下方.
S△OBN=12×4×|n|=325.n=-165.
將其代入拋物線表示式,求得橫座標為2±25105,
∴存在點N,使△OBN與△OAB相似,點N的座標為2±25105,-165.
九年級數學下學期期中試題
一、選擇題每小題3分,共30分
1.如圖是我們學過的反比例函式圖象,它的函式解析式可能是B
A.y=x2 B.y=4x C.y=-3x D.y=12x
2.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交於點A,B,C和點D,E,F.已知AB=1,BC=3,DE=2,則EF的長為C
A.4 B.5 C.6 D.8
3.如圖,雙曲線y=kxk≠0的圖象上有一點A,過點A作AB⊥x軸於點B,△AOB的面積為2,則該雙曲線的解析式為D
A.y=2x B.y=-2x
C.y=4x D.y=-4x
4.已知點A-2,y1,B3,y2是反比例函式y=kxk<0圖象上的兩點,則有B
A.y1<0
C.y1
5.如圖,在△ABC中,點D,E分別在邊AB,AC上,下列條件中不能判斷△ABC∽△AED的是D
A.∠AED=∠B B.∠ADE=∠C
C.ADAE=ACAB D.ADAB=AEAC
6.如圖是一次函式y1=kx-b和反比例函式y2=mx的圖象,觀察圖象,寫出y1>y2時x的取值範圍是D
A.x>3 B.x>-2或x>3
C.x<-2或03
7.如圖,利用標杆BE測量樓的高度,標杆BE高1.5 m,測得AB=2 m,BC=14 m,則樓高CD為C
A.10.5 m B.9.5 m
C.12 m D.14 m
8.函式y=ax2-a與y=axa≠0在同一平面直角座標系中的圖象可能是A
9.如圖,在平面直角座標系中有兩點A6,2,B6,0,以原點為位似中心,相似比為3∶1,把線段AB縮小得到A′B′,則過A′點對應點的反比例函式的解析式為B
A.y=4x
B.y=43x
C.y=-43x
D.y=18x
10.如圖,點D是等邊△ABC邊AB上的一點,且AD∶BD=1∶2,現將△ABC摺疊,使點C與D重合,摺痕為EF,點E,F分別在AC和BC上,則CE∶CF=B
A.34 B.45 C.56 D.67
二、填空題每小題3分,共24分
11.已知反比例函式y=kx的圖象經過點1,5,則k的值是5.
12.如圖,若△ADE∽△ACB,且ADAC=23,DE=10,則BC=15.
13.如圖,已知△ABC∽△DBE,AB=6,DB=8,則S△ABCS△DBE=916.
14.若反比例函式y=k-3x的圖象位於第一、三象限,正比例函式y=2k-9x過第二、四象限,則k的整數值是4.
15.如圖,點P是▱ABCD邊AB上的一點,射線CP交DA的延長線於點E,則圖中相似的三角形有3對.
16.若直線y=kxk>0與雙曲線y=2x的交點為x1,y1,x2,y2,則2x1y2-5x2y1的值為6.
17.如圖,在正方形ABCD中,點E為AB的中點,AF⊥DE於點O,則AODO=12 .
18.如圖,已知雙曲線y=kxk>0的圖象經過Rt△OAB的斜邊OB的中點D,與直角邊AB相交於點C.當BC=OA=6時,k=12.
三、解答題共66分
19.8分反比例函式y=m-2x的圖象的一支在平面直角座標系中的位置如圖所示,根據圖象回答下列問題:
1圖象的另一支在第四象限;在每個象限內,y隨x的增大而增大;
2若此反比例函式的圖象經過點-2,3,求m的值.點A-5,2是否在這個函式圖象上?點B-3,4呢?
解:把-2,3代入y=m-2x,得m-2=xy=-2×3=-6,
∴m=-4.
∴該反比例函式的解析式為y=-6x.
∵-5×2=-10≠-6,
∴點A不在該函式圖象上.
∵-3×4=-12≠-6,
∴點B不在該函式圖象上.
20.10分一定質量的氧氣,其密度ρkg/m3是它的體積Vm3的反比例函式.當V=10 m3時,ρ等於1.43 kg/m3.
1求ρ與V的函式解析式;
2當V=2 m3時,求氧氣的密度.
解:1由題意,得Vρ=10×1.43=14.3,
∴ρ與V的函式解析式為ρ=14.3V.
2當V=2時,ρ=14.32=7.15,
即氧氣的密度為7.15 kg/m3.
21.10分如圖,在梯形ABCD中,AB∥DC,△AOB的面積等於9,△AOD的面積等於6,AB=7,求CD的長.
解:∵AB∥DC,
∴△COD∽△AOB.
∴CDAB=DOBO.
∵△AOB的面積等於9,△AOD的面積等於6,
∴S△AODS△AOB=DOBO=23.
∴CDAB=DOBO=23.
∵AB=7,
∴CD7=23.
∴CD=143.
22.12分為了估算河的寬度,我們可以在河對岸的岸邊選定一個目標作為點A,再在河的這一邊選點B和點C,使AB⊥BC,然後再選點E,使EC⊥BC,確定BC與AE的交點為點D,如圖,測得BD=120米,DC=60米,EC=50米,你能求出兩岸之間AB的大致距離嗎?
解:∵AB⊥BC,EC⊥BC,
∴∠ABD=∠ECD=90°.
又∵∠BDA=∠CDE,
∴Rt△ABD∽Rt△ECD.
∴ABBD=ECCD.
∴AB120=5060.
∴AB=100米.
答:兩岸之間AB的大致距離為100米.
23.12分如圖,點M為線段AB的中點,AE與BD交於點C,∠DME=∠A=∠B=α,且DM交AC於點F,ME交BC於點G.
1寫出圖中三對相似三角形,並證明其中的一對;
2連線FG,如果α=45°,AB=42,AF=3,求FC和FG的長.
解:1△AME∽△MFE,△BMD∽△MGD,
△AMF∽△BGM.
證明:∵∠AMD=∠B+∠D,∠BGM=∠DMG+∠D,
又∵∠B=∠A=∠DME=α,
∴∠AMF=∠BGM.
∴△AMF∽△BGM.
2∵M是線段AB的中點,AB=42,
∴AM=BM=22.
由1知△AMF∽△BGM,
∴BGAM=BMAF,即BG22=223.∴BG=83.
∵∠A=∠B=α=45°,
∴△ABC為等腰直角三角形.
∴AC=BC=4.
∴FC=AC-AF=4-3=1,
CG=BC-BG=4-83=43.
在Rt△CFG中,由勾股定理,得
FG=FC2+CG2=12+432=53.
24.14分如圖,在平面直角座標系中,菱形OBCD的邊OB在x軸上,反比例函式y=kxx>0的圖象經過菱形對角線的交點A,且與邊BC交於點F,點A的座標為4,2.
1求反比例函式的解析式;
2求點F的座標.
解:1把A4,2代入y=kx,得2=k4,解得k=8.
∴反比例函式的解析式為y=8x.
2作AE⊥x軸於點E,CG⊥x軸於點G,FH⊥x軸於點H.
∵四邊形OBCD是菱形,
∴OA=12OC,OB=BC.
∵AE⊥x軸,CG⊥x軸,
∴AE∥CG.
∴△AOE∽△COG.
∴AECG=OEOG=OAOC=12.
∴CG=2AE=4,OG=2OE=8.
設BC=x,則BG=8-x.
在Rt△BCG中,x2-8-x2=42,解得x=5.
∴OB=BC=5,BG=3.
設點F的橫座標為m,則點F的縱座標為8m.
∵FH⊥x軸,CG⊥x軸,∴FH∥CG.
∴△BFH∽△BCG.
∴BHBG=FHCG,即m-53=8m 4 .
解得m1=6,m2=-1捨去.
∴8m=43.
∴點F的座標為6,43.
九年級數學秋季學期期末試題