初中八年級上冊數學知識點總結歸納
進入八年級了,好多同學都說:數學很難學。其實想要學好數學最簡單的方法就是做好知識點的總結歸納。以下是小編分享給大家的初中八年級上冊數學知識點,希望可以幫到你!
初中八年級上冊數學知識點
第十一章 三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
2.三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊.
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高.
4.中線:在三角形中,連線一個頂點和它對邊中點的線段叫做三角形的中線.
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性.
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
10.多邊形的對角線:連線多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線.
11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和.
性質2:三角形的一個外角大於任何一個和它不相鄰的內角.
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°.
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線.
第十二章 全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形.
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點.
⑷對應邊:全等三角形中互相重合的邊叫做對應邊.
⑸對應角:全等三角形中互相重合的角叫做對應角.
2.基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性.
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等.
3.全等三角形的判定定理:
⑴邊邊邊******:三邊對應相等的兩個三角形全等.
⑵邊角邊******:兩邊和它們的夾角對應相等的兩個三角形全等.
⑶角邊角******:兩角和它們的夾邊對應相等的兩個三角形全等.
⑷角角邊******:兩角和其中一個角的對邊對應相等的兩個三角形全等.
⑸斜邊、直角邊******:斜邊和一條直角邊對應相等的兩個直角三角形全等.
4.角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等.
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上.
5.證明的基本方法:
⑴明確命題中的已知和求證.***包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關係***
⑵根據題意,畫出圖形,並用數字符號表示已知和求證.
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章 軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線摺疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線摺疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱.
⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線.
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
2.基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線.
②對稱的圖形都全等.
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等.
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上.
⑶關於座標軸對稱的點的座標性質
⑷等腰三角形的性質:
①等腰三角形兩腰相等.
②等腰三角形兩底角相等***等邊對等角***.
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
④等腰三角形是軸對稱圖形,對稱軸是三線合一***1條***.
⑸等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等於60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一***3條***.
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等***等角對等邊***.
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連線兩個對應點,作所連線段的垂直平分線.
⑷作已知圖形關於某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短.
初中八年級數學學習方法
一、預習的方法
***1***看書要動筆。***不動筆墨不讀書***
①一般採用邊閱讀、邊思考、邊書寫的方式,把內容的要點、層次、聯絡劃出來或打上記號,寫下自己的看法或在弄不懂的地方與問題上做記號;
②預習時一旦發現舊知識掌握得不好,甚至不理解時,就要及時翻書查閱摘抄,採取措施補上,為順利學習新內容創造條件。
③瞭解本節課的基本內容,也就是知道要講些什麼,要解決什麼問題,採取什麼方法,重點關鍵在哪裡等等。
④要把某一本練習冊所對應的章節拿出來大致看一遍,看哪些題一下能看會,哪些題根本看不懂,然後帶著疑問去聽課。
***2***確定聽課要點。把握自己要解決的主要問題,以提高聽課的效率。
二、聽課的方法。
***1***盯住老師。除在預習中已明確的任務,做到有針對性地解決符合自己的問題外,還要把自己思維活動緊緊跟上教師的講課,如定理是如何發現或產生的,證明的思路是怎樣想出來的,中間要攻破哪幾個關鍵的地方。公式、定理是如何運用的。許多數學家都十分強調“應該不只看到書面上,而且還要看到書背後的東西。”
***2***敢於發言。聽課時,一方面理解教師講的內容,思考或回答教師提出的問題,另一方面還要獨立思考,如有疑問或有新的問題,要勇於提出自己的看法。
***3***記筆記。聽課時要把老師講課的要點、補充的內容與方法記下。
三、複習方法。
***1***複習筆記和捲紙。對學習的內容務求弄懂,切實理解掌握。不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生的,是如何展開或得到證明的,其實質是什麼,應用它如何拓展加寬等。要勤於複習***知識點、典型題等***,經常看,反覆看---這就是心理學上講的艾賓浩斯遺忘曲線所揭示的道理。建議學生採用放電影的方法。完成作業後,把書和筆記合上,回憶課堂上的內容,如定律、公式及例題解答思路、方法等,儘量完整的在大腦中重現。再開啟課本及筆記進行對照,重點複習遺漏的知識點。這既鞏固了當天上課內容,也可查漏補缺。
***2***適量做題。準備一個錯題本,記載做過的錯題再次演練。對於自己曾經做錯的題目,回想一下為什麼會錯、錯在什麼地方。自己曾經犯錯誤的地方,往往是自己最薄弱的地方,僅有當時的訂正是不夠的,還要進行適當的強化訓練。
***3***大膽質疑,增強學習的主動性。要經常與同學研究,或問老師,不要積攢過多問題。更不要把不會做的題完全寄託在課堂上等待老師去講。
初中八年級數學學習技巧
1、建立數學糾錯本。做作業或複習時做錯了題,一旦搞明白,決不放過,建立一本錯誤登記本,以降低重複性錯誤,不怕第一次不會,不怕第一次出錯,就怕下一次還犯同樣的錯誤把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:平時作業、課外做題及考試中,對出錯的數學題建立錯題集很有必要。錯題集由錯題、錯誤原因、改正措施、訂正和鞏固防錯五項內容組成。
2、記憶數學規律和數學小結論;
3、與同學建立好關係,爭做“小老師”,形成數學學習“互助組”。多看其他同學的捲紙,吸取其優良方法,借鑑錯誤。
4、經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。結合自身特點,尋找最佳學習方法。
5、經常在做題後進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,本題的分析方法與解法,在解其它問題時,是否也用到過。無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,這是學好數學的重要問題。
1.初二上學期數學知識點彙總
2.八年級上冊歷史全部知識點整理
3.初二數學上冊知識點歸納
4.8年級上冊數學知識點
5.初二上冊歷史重點知識點歸納有哪些
初中八年級上冊歷史知識點總結歸納