八年級上冊數學期末試卷
期末考試與學生的學習是息息相關的。下面是小編為大家精心整理的,僅供參考。
一、選擇題
1.下列四種圖形中,是軸對稱圖形的為*** ***
A.平行四邊形 B.三角形 C.圓 D.梯形
2.在 , , , , 中,分式的個數為*** ***
A.2個 B.3個 C.4個 D.5個
3.計算﹣12a6÷***3a2***的結果是*** ***
A.﹣4a3 B.﹣4a8 C.﹣4a4 D.﹣ a4
4.一個多邊形的每一個頂點處取一個外角,這些外角中最多有鈍角*** ***
A.1個 B.2個 C.3個 D.4個
5.若x+m與x+3的乘積中不含x的一次項,則m的值為*** ***
A.0 B.1 C.3 D.﹣3
6.如圖,在△ABC中,AB=AC,DE垂直平分AB,分別交AB、AC於點D、E,若∠EBC=30°,則∠A=*** ***
A.30° B.35° C.40° D.45°
7.下列命題正確的是*** ***
A.到角兩邊距離相等的點在這個角的平分線上
B.垂直於同一條直線的兩條直線互相平行
C.平行於同一條直線的兩條直線互相平行
D.等腰三角形的高線、角平分線、中線互相重合
8.某機床廠原計劃在一定期限內生產240套機床,在實際生產中通過改進技術,結果每天比原計劃多生產4套,並且提前5天完成任務.設原計劃每天生產x套機床,根據題意,下列方程正確的是*** ***
A. B.
C. D.
9.如圖,OM平分∠AOB,MC∥OB,MD⊥OB於D,若∠OMD=75°,OC=8,則MD的長為*** ***
A.2 B.3 C.4 D.5
10.無論x、y取任何值,多邊形x2+y2﹣2x﹣4y+6的值總是*** ***
A.正數 B.負數 C.非正數 D.非負數
二、填空題***共8小題,每小題3分,滿分24分***
11.已知等腰三角形兩個內角度數之比是1:4,則這個等腰三角形的底角為 .
12.若***ambnb***3=a9b15,那麼m+n= .
13.三角形的三邊長分別為3cm,5cm,xcm,則x的取值範圍是 .
14.如圖,AB∥CF,E為DF中點,AB=20,CF=15,則BD= .
15.若一個多邊形的內角和等於其外角和的2倍,則它是 邊形.
16.若方程 無解,則k的值為 .
17.如圖,△ABC中,DE是AC的垂直平分線,AE=4cm,△ABD的周長為14cm,則△ABC的周長為 .
18.已知P***5,5***,點B、A分別在x的正半軸和y的正半軸上,∠APB=90°,則OA+OB= .
三、解答題***共8小題,滿分66分***
19.計算:
***1***﹣ m2n•***﹣mn2***2
***2******x2﹣2x******2x+3***÷***2x***
***3******2x+y******2x﹣y***+***x+y***2﹣2***2x2+xy***
***4******ab﹣b2*** .
20.分解因式:
***1***ax4﹣9ay2
***2***2x3﹣12x2+18x.
21.解方程: .
22.先化簡再求值:***1﹣ *** ,其中x=*** ***﹣1+30.
23.如圖,在平面直角座標系中,A***﹣1,5***,B***﹣1,0***,C***﹣4,3***.
***1***求出△ABC的面積;
***2***在圖中作出△ABC關於y軸的對稱圖形△A1B1C1;
***3***寫出點A1,B1,C1的座標.
24.如圖,已知點P在AB上,∠APD=∠APC,∠DBA=∠CBA,求證:AC=AD.
25.紅紅開車從營口到盤錦奶奶家去,她去時因有事要辦經過外環公路,全程84千米,返回時經過遼河大橋,全程45千米,紅紅開車去時的平均速度是返回的1.2倍,所用時間卻比返回時多20分鐘,求紅紅返回時的車速.
26.如圖,△ABC和△AED為等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.連線BE、CD交於點O,連線AO並延長交CE為點H.
求證:∠COH=∠EOH.
參考答案
一、選擇題***共10小題,每小題3分,滿分30分***
1.下列四種圖形中,是軸對稱圖形的為*** ***
A.平行四邊形 B.三角形 C.圓 D.梯形
【考點】軸對稱圖形.
【分析】根據軸對稱圖形的概念:如果一個圖形沿一條直線摺疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,依據定義即可得出結果.
【解答】解:A、平行四邊形不是軸對稱圖形,故本選項錯誤;
B、三角形不一定是軸對稱圖形,故本選項錯誤;
C、圓是軸對稱圖形,故本選項正確;
D、梯形不一定是軸對稱圖形,故本選項錯誤.
故選C.
2.在 , , , , 中,分式的個數為*** ***
A.2個 B.3個 C.4個 D.5個
【考點】分式的定義.
【分析】根據分式與整式的定義對各式進行逐一分析即可.
【解答】解: , 的分母中含有未知數,是分式;
, , 的分母中不含有未知數,是整式.
故選A.
3.計算﹣12a6÷***3a2***的結果是*** ***
A.﹣4a3 B.﹣4a8 C.﹣4a4 D.﹣ a4
【考點】整式的除法.
【分析】根據單項式相除,把係數與同底數冪分別相除作為商的因式,對於只在被除式裡含有的字母,則連同它的指數作為商的一個因式計算.
【解答】解:﹣12a6÷***3a2***
=***﹣12÷3***•***a6÷a2***
=﹣4a4.
故選C.
4.一個多邊形的每一個頂點處取一個外角,這些外角中最多有鈍角*** ***
A.1個 B.2個 C.3個 D.4個
【考點】多邊形內角與外角.
【分析】根據多邊形的外角和等於360°,所以外角中鈍角最多有三個.
【解答】解:∵多邊形的外角和等於360°,
∴外角中鈍角最多有3個.
故選C.
5.若x+m與x+3的乘積中不含x的一次項,則m的值為*** ***
A.0 B.1 C.3 D.﹣3
【考點】多項式乘多項式.
【分析】先根據已知式子,可找出所有含x的項,合併係數,令含x項的係數等於0,即可求m的值.
【解答】解:***x+m******x+3***=x2+***m+3***x+3m,
∵乘積中不含x的一次項,
∴m+3=0,
∴m=﹣3.
故選D.
6.如圖,在△ABC中,AB=AC,DE垂直平分AB,分別交AB、AC於點D、E,若∠EBC=30°,則∠A=*** ***
A.30° B.35° C.40° D.45°
【考點】線段垂直平分線的性質;等腰三角形的性質.
【分析】設∠A為x,根據線段的垂直平分線的性質得到EA=EB,用x表示出∠BEC,根據等腰三角形的性質得到∠ABC=∠C,根據三角形內角和定理列出方程,解方程即可.
【解答】解:設∠A為x,
∵DE垂直平分AB,
∴EA=EB,
∴∠EBA=∠A=x,
∴∠BEC=2x,
∵AB=AC,
∴∠ABC=∠C,
∴30°+x+30°+2x=180°,
解得,x=40°,
故選:C.
7.下列命題正確的是*** ***
A.到角兩邊距離相等的點在這個角的平分線上
B.垂直於同一條直線的兩條直線互相平行
C.平行於同一條直線的兩條直線互相平行
D.等腰三角形的高線、角平分線、中線互相重合
【考點】命題與定理.
【分析】利用前提條件的缺失可對A、B進行判斷;根據平行線的性質對C進行判斷;根據等腰三角形的性質對D進行判斷.
【解答】解:A、在平面內,到角兩邊距離相等的點在這個角的平分線上,所以A選項的說法不正確;
B、在同一平面內,垂直於同一條直線的兩條直線互相平行,所以B選項的說法不正確;
C、平行於同一條直線的兩條直線互相平行,所以C選項的說法正確;
D、等腰三角形底邊上的高線、頂角的角平分線和底邊上的中線互相重合,所以D選項的說法不正確.
故選C.
8.某機床廠原計劃在一定期限內生產240套機床,在實際生產中通過改進技術,結果每天比原計劃多生產4套,並且提前5天完成任務.設原計劃每天生產x套機床,根據題意,下列方程正確的是*** ***
A. B.
C. D.
【考點】由實際問題抽象出分式方程.
【分析】關鍵描述語為:提前5天完成任務.等量關係為:原計劃用的時間﹣5=實際用的時間.
【解答】解:實際用的時間為: ;原計劃用的時間為: .方程可表示為: .
故選B.
9.如圖,OM平分∠AOB,MC∥OB,MD⊥OB於D,若∠OMD=75°,OC=8,則MD的長為*** ***
A.2 B.3 C.4 D.5
【考點】含30度角的直角三角形;角平分線的性質;等腰三角形的判定與性質.
【分析】作ME⊥OB於E,根據直角三角形的性質求出∠MOD=15°,根據角平分線的定義求出∠AOB的度數,根據平行線的性質得到∠ECM=∠AOB=30°,根據直角三角形的性質求出EM,根據角平分線的性質得到答案.
【解答】解:作ME⊥OB於E,
∵MD⊥OB,∠OMD=75°,
∴∠MOD=15°,
∵OM平分∠AOB,
∴∠AOB=2∠MOD=30°,
∵MC∥OB,
∴∠ECM=∠AOB=30°,
∴EM= MC=4,
∵OM平分∠AOB,MD⊥OB,ME⊥OB,
∴MD=ME=4,
故選:C.
10.無論x、y取任何值,多邊形x2+y2﹣2x﹣4y+6的值總是*** ***
A.正數 B.負數 C.非正數 D.非負數
【考點】配方法的應用;非負數的性質:偶次方.
【分析】利用完全平方公式把多項式分組配方變形後,利用非負數的性質判斷即可.
【解答】解:∵x2+y2﹣2x﹣4y+6=***x2﹣2x+1***+***y2﹣4y+4***+1=***x﹣1***2+***y﹣2***2+1≥1>0,
∴多項式的值總是正數.
故選:A.
數學八年級上冊期末測試題