二階混合偏導怎麼求?
二階混合偏導數是怎麼計算的 我有圖大家說下 謝謝了
1、不知道樓主是什麼樣的題目,能補充說明嗎?
2、若是想詢問二階偏導的一般計算方法,下面提供五道例題,
每道例題具有詳細解答;
3、每張圖片均可點擊放大,放大後,圖片更加清晰。
求二階混合偏導數怎樣求
u = abcxyz
∂u/∂x = abcyz
∂u/∂y = abcxz
∂u/∂z = abcxy
僅舉一例:
∂²u/∂x∂y = abcz
∂²u/∂x∂z = abcy
∂²u/∂y∂z = abcx
什麼是MOTION bOARD 5分
不知你值得這個詞是在那個情況下說的。
幾個意思 1、活動腳本(關於廣告的),也是最有可能的。
2、頻動視頻控制板(計算機的)
要是這個的話,全稱應該是 "motion control board"
也是沒有太能的。
如何求二階混合偏導數
不一定駐點既是對x,y的一階偏導數等於0的點在該點是否取得極值由AC-B^2的正負給出,A=fxx,B=fxy,C=fyy。 查看原帖>>
那個二階混合偏導數的順序咋弄啊,老是不知道!謝謝大家啦
求二階混合偏導數的時候,
先對x 求導還是先對y 求導是一樣的,
z=[sin(ax+by)]^2
先對x 求偏導得到,2sin(ax+by) *cos(ax+by) *a
即sin(2ax+2by) *a
繼續對y 求偏導得到,cos(2ax+2by) *2b *a=2ab *cos(2ax+2by)
同理,先對y 求偏導得到,2sin(ax+by) *cos(ax+by) *b
即sin(2ax+2by) *b
繼續對x 求偏導得到,cos(2ax+2by) *2a *b=2ab *cos(2ax+2by)
二者得到的結果是一樣的,
所以不必考慮求偏導的順序
怎麼看二階混合偏導數連續
全微分 total differentiation,跟二階混合偏導數
second order mixed partial differentiation,沒有關係:
.
1、全微分僅僅涉及一階偏導數
dz = (∂z/∂x) dx + (∂z/∂y) dy。
.
2、漢語中,無中生有地將 differentiable 翻譯成
兩個衝突的概念:可微一定可導,可導不一定可微。
.
英文中並沒有這樣的區分,我們的原意是深化概念。
結果卻在漢語微積分中,由於不懂英文的教師佔了
絕對的比重,根據漢語的說文解字,無止境地誇張、
引申、渲染,結果的結果,就與原意大相徑庭了。
.
再如 :
“一階微分具有不變性”,那二階微分呢?三階微分呢?
如何二階微分、三階微分?
d^(n)y / dx^n = d^(n)y / d^(n)x ?
再加上從大躍進開始的趕英超美意識,我們的微積分中
有了很多無厘頭、急就章的說法,迄今為止,仍在延續。
關於二階混合偏導數的計算順序問題。
國內流行的教材一般都是選擇先x的,
比如同濟教材(全國很多大學的通用教材)
所以,我還是支持②③
畫線的地方看不懂。隱函數的二階混合偏導該怎麼求?
z是關於y的函數,y/z相當於基本求導法則裡的,商求導