虛數單位是什麼?
什麼是虛數?
負數開平方,在實數範圍釘無解。
數學家們就把這種運算的結果叫做虛數,因為這樣的運算在實數範圍內無法解釋,所以叫虛數。
實數和虛數組成的一對數在複數範圍內看成一個數,起名為複數。
於是,實數成為特殊的複數(缺序數部分),虛數也成為特殊的複數(缺實數部分)。
虛數單位為i, i即根號負1。
3i為虛數,即根號(-3), 即3×根號(-1)
2+3i為複數,(實數部分為2,虛數部分為3i)
什麼是虛數單位?
i的平方=-1
i就是虛數單位
高三數學課本上有
我們將形如:Z=x+iy的數稱為複數,其中i為虛數單位,並規定i^2=i*i=-1.x與y是任意實數,依次稱為z的實部(real part)與虛部(imaginary part),分別表示為Rz=x , Im z=y. 易知:當y=0時,z=x+iy=x+0,我們就認為它是實數;當x=0時z=x+iy=0+iy我們就認為它是純虛數。設 Z1=x+iy是一個複數,稱 Z2=x-iy為Z1的共軛複數。
複數的四則運算規定為:
(a+bi)+(c+di)=(a+c)+(b+d)i,
(a+bi)-(c+di)=(a-c)+(b-d)i,
(a+bi)•(c+di)=(ac-bd)+(bc+ad)i,
(c與d不同時為零)
(a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i,
(c+di)不等於0
複數有多種表示形式,常用形式 z=a+bi 叫做代數式。
此外有下列形式。
①幾何形式。複數z=a+bi 用直角座標平面上點 Z(a,b )表示。這種形式使複數的問題可以藉助圖形來研究。也可反過來用複數的理論解決一些幾何問題。
②向量形式。複數z=a+bi用一個以原點O為起點,點Z(a,b)為終點的向量OZ表示。這種形式使複數的加、減法運算得到恰當的幾何解釋。
③三角形式。複數z=a+bi化為三角形式
z=r(cosθ+sinθi)
式中r= sqrt(a^2+b^2),叫做複數的模(或絕對值);θ 是以x軸為始邊;向量OZ為終邊的角,叫做複數的輻角。這種形式便於作複數的乘、除、乘方、開方運算。
④指 數形式。將複數的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ換為 exp(iθ),複數就表為指數形式z=rexp(iθ)
複數三角形式的運算:
設複數z1、z2的三角形式分別為r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那麼z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]
z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若複數z的三角形式為r(cosθ+isinθ),那麼z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必須記住:z的n次方根是n個複數。
複數的乘、除、乘方、開方可以按照冪的運算法則進行。複數集不同於實數集的幾個特點是:開方運算永遠可行;一元n次復係數方程總有n個根(重根按重數計);復俯不能建立大小順序。
高考的話出在第一道選擇題上
參考資料:baike.baidu.com/view/10078.htm
什麼是虛數和虛數單位
複數包括實部和虛部,虛部是由非零實數與虛數單位的乘積。
虛數單位i^2=-1。