數學分數與除法教學反思
General 更新 2025年01月03日
分數與除法的關係是在學生學習了分數的意義後進行教學的,目的是使學生初步知道兩個整數相除,不論是被除數小於、等於、或大於除數,都可以用分數來表示它們的商。下面是小編為大家收集的,望大家喜歡。
範文一
分數與除法的關係的理解與掌握,不但可以加深對分數意義的理解,而且為後面學習假分數、帶分數、分數的基本性質以及比、百分數打下基礎,所以,分數與除法的關係在整個教材中起到承上啟下的重要作用。
新課標指出:“學生的教學學習內容應當是現實的,有意義的,富有挑戰性的,這些內容要有利於學生主動地進行觀察,猜測,驗證,推測與交流等教學活動.”這說明創設有效的學習情境,可以引導學生開展“自主,探索,合作”的學習活動,促進學生主動的參與。” 所以,在匯入新課環節,我有意設計了兩道除法計算題: 8÷9= 4÷7=
學生一看是這樣兩道除法算式,都鬆了口氣,說:“這麼簡單的兩道題啊!”於是我在班上開展了男女兩組比賽,男生算第一題,女生算第二題。一聲令下,男生埋頭算起來,思維敏捷的胡雯欣早就知道了答案,根本沒有動筆,我示意她不要說出答案。我轉了一圈,大部分學生在已經做好的學生的提示下都已經有了答案,只有個別男生還在計算。
彙報後,我引發學生思考:8÷9= 0.88……和8÷9= 8/9有什麼區別?學生最直接的回答是:用迴圈小數表示沒有用分數表示快捷、簡便。這個匯入使學生明白兩個數相除可以用分數來表示商,為進一步學習分數與除法的關係打下基礎。
之後,再出示兩個數相除的算式,學生都能夠很快地用分數來表示商。
以例題中的1÷3=1/3引導學生髮現除法中的被除數相當於分數中的分子,除數相當於分數中的分母后,讓學生把數字換成它們的名稱:被除數÷除數=分子/分母。這時候,我讓學生用字母a、b表示除法與分數的關係。薛龍鳳上黑板認真地寫下:a÷b=a/b,我見這個學生寫得很認真,馬上表揚了她,並要求學生為她鼓掌。正當大家都為薛龍鳳高興的時候,我在她寫的算式後面打了個小小的“×”。學生立刻表示不解,剛剛老師誇了了她,現在怎麼又給她判“×”。還是幾個思維靈活的先叫起來,說到:“b不能等於0!”我馬上抓住這個契機,發問到:“為什麼b不能等於0?”班上頓時安靜下來,誰也說不上來原因。這個難點馬上就要突破了,我心裡有點小小的激動。我繼續利用例題中的把1塊蛋糕平均分給3個人,每人分得這塊蛋糕的1/3為例問道:“誰來說說這個分數中的‘3’表示什麼?”有學生舉手回答:“把蛋糕看做單位‘1’,‘3’表示把蛋糕平均分成的份數。”“如果把‘3’換成‘0’呢?”學生終於明白:分母表示把單位“1”平均分成的份數,平均分成“0”份就沒有意義了。就這個“a÷b=a/b***b≠0***”學生經常會忘記,這裡的b要強調不能為0。通過這樣分析,學生能夠更加深刻地認識到在除法中除數不能為0,而在分數中分母不能為0。
我覺得這個環節我處理的比較好,不是直接告訴學生在除法中除數不能為0,除數相當於分數中的分母,所以分母也不能為0。而是通過分析一個分數的實際意義充分理解分數中的分母表示平均分的份數,自然不能被平均分成“0”份。
成功之處有,不足之處也有。課後反思之,對分數與除法的聯絡學生理解的比較透徹,但是它們之間還有哪些區別卻並沒有在課堂上引導學生去發現和歸納。除法表示兩個數相除,是一道算式,而分數是一個數。這說明課前我對教材的解讀不夠深入,還沒有把握住知識的整體性和連貫性。在以後的教學中,努力做到對教材的深入理解,同時要多查閱資料,以便對教材知識進行拓展和延伸。
範文二
分數與除法的關係是在學生學習了分數的意義後進行教學的,目的是使學生初步知道兩個整數相除,不論是被除數小於、等於、或大於除數,都可以用分數來表示它們的商。
這部分內容的教學,不但可以加深學生對分數意義的理解,而且是後面學習假分數、帶分數、分數的基本性質以及比、百分數的基礎,所以,分數與除法的關係在整個教材中起著承上啟下的重要作用。如果單純地從形式上去教學分數與除法間的關係,學生能學得很紮實,但這樣一來計算3÷4=3/4的算理往往被忽視,為了讓學生知其然且知其所以然,我是這樣來組織教學的:
1.通過實際操作感悟新知識
在教學中,我設計了這樣的教學情境,把一張餅平均分給四個小朋友,每人分得多少?讓學生拿一張圓形紙片代表一張餅,親自動手分一分,喚起對分數意義的理解。接著出示要把3張餅平均分給4個小朋友,每個小朋友分得多少?四人一小組想辦法把3張圓形紙片平均分給4個小朋友。並讓小組派代表上臺展示分的過程。學生通過動手操作,得出兩種不同的分法,引申出兩種含義,即每人分得1張餅的四分之三,也可以說是3張餅的四分之一,通過這一過程,學生充分理解了3÷4=3/4的算理。
2、使學生清楚為什麼要用分數來表示除法算式的結果
在學生理解了分數與除法的關係之後,我有意識的設計了這樣幾道練習題。1÷3= 8÷9= 2÷6= 讓學生把計算結果寫在練習本上,比比看誰先算完。結果有的學生一兩秒鐘就舉起了手,而有的學生費了很長時間才寫出了計算結果。彙報之後,引導學生思考:1÷3=0.333……與1÷3=1/3 8÷9= 0.88……與8÷9=
8/9有什麼區別?學生最直接的回答是:用迴圈小數表示商計算太麻煩,沒有用分數表示快捷、簡便。這時告訴學生,以後計算兩個整數 相除的商,除不盡時或商裡有小數時就用分數表示他們的商,這樣既簡便又快捷,而且不容易出錯。
3、藉機引申,為後續學習做好鋪墊
第一次向學生介紹分率與數量的區別。如①“把一張餅平均分成4份,每份分得這張餅的幾分之幾?每份分得多少張餅?”② "把2米長的繩子平均分成7段,每段長是這根繩子的幾分之幾? 每段長多少米 "③"把4千克鹽平均分成5份,每份重量是鹽的總數的幾分之幾
/每份重多少千克?先讓學生明白這三道題第一問求的都是“分率”,分率沒有單位,都是把總數看做單位“1”,把單位1平均分成若干份,求其中的一份是總數的幾分之一,都是用單位“1”除以平均分的份數得到,如前三道題的分率分別是1÷4=1/4 1÷7=1/7
1÷5=1/5。而第二問都是求每份數量是多少,每份數量是有單位的,都是用總數量除以平均分的份數得到,得數一定帶單位名稱。前三道題第二問的演算法分別是1÷4=1/4***張*** 2÷7=2/7 ***米***4÷5=4/5***千克***
此處學生理解了分率和每份數量之後,為後面學習分數、百分數應用題做了良好的鋪墊作用。
4、讓學生自主建構新知識
當學生髮現除法中的被除數相當於分數中的分子,除數相當於分數中的分母后,引導學生把數字換成它們的名稱:被除數÷除數=被除數/除數。這時候,再讓學生在練習本上用字母a、b表示除法與分數的關係。多數學生寫下:a÷b=a/b,老師拿一名稍差學生的板書出來,故意表揚這位同學。正表揚卻突然轉身給這名學生作業後面一個大叉號。正當同學們都詫異的時候?問為什麼錯了?這時幾個思維靈活的先叫起來,說到:“b不能等於0!”我馬上抓住這個契機,追問:“為什麼b不能等於0?”。我繼續用課堂中的例題把1張餅平均分給4個人,每人分得這塊蛋糕的1/4為例,讓學生說說這個分數中的‘4’表示什麼?”“如果把‘4’換成‘0’呢?”學生恍然大悟:分母表示把單位“1”平均分成的份數,平均分成“0”份就沒有意義了。在用字母表示分數與除法的關係時----“a÷b=a/b***b≠0***”學生經常會忘記,這裡的b不能為0。通過這樣分析,學生能夠更加深刻地認識到在除法中除數不能為0,所以在分數中分母不能為0的道理。這裡並不直接告訴學生在除法中除數不能為0,除數相當於分數中的分母,所以分母也不能為0。而是通過分析一個分數的實際意義讓學生充分理解分數中的分母表示平均分的份數,所以分母不能為“0”的道理。
本節課的不足之處:雖然學生對分數與除法的聯絡學生理解的比較透徹,但是它們之間還有哪些區別沒有引導學生總結出來。除法表示兩個數相除,是一種運算,是一個算式,而分數既可以表示分子與分母相除的關係,又可以表示一個數值。
範文三
本節課我是在學生學習了分數的產生和意義的基礎上教學的,教學分數的產生時,平均分的過程往往不能得到整數的結果,要用分數來表示,已初步涉及到分數與除法的關係;教學分數的意義時,把一個物體或一個整體平均分成若干份,也蘊涵著分數與除法的關係,但是都沒有明確提出來,在學生理解了分數的意義之後,教學分數與除法的關係,使學生初步知道兩個整數相除,不論被除數小於、等於、大於除數,都可以用分數來表示商。這樣可以加深和擴充套件學生對分數意義的理解,同時也為講假分數與分數的基本性質打下基礎。具體說本節課有以下幾個特點:
一、直觀演示是學生理解分數與除法的關係的前提。
由於學生在學習分數的意義時已經對把一個物體平均分比較熟悉,所以本節課教學把一張餅平均分給3個人時並沒有讓學生操作,而是計算機演示分的過程,讓學生理解1張餅的就是張。3塊餅平均分給4個人,每人分多少張餅,是本節課教學的重點,也是難點。教師提供學具讓學生充分操作,體驗兩種分法的含義,重點在如何理解3塊餅的就是張。把2塊餅平均分給3個人,每人應該分得多少塊?繼續讓學生操作,豐富對2塊餅的就是2/3塊餅的理解。學生操作經驗的積累有效地突破了本節課的難點。
二、培養學生提出問題的意識與能力是培養學生創新精神的關鍵。
愛因斯坦曾說:提出一個問題比解決一個問題更重要。學生提出問題的能力不是與生俱來的,需要教師精心、具體的指導。本節課圍繞兩種分法精心設計了具有思考性的、合乎邏輯的問題串,“逼”學生進行有序的思考,從而進一步提出有價值的問題。比如學生展示完自己的分法後教師啟發學生提出問題:
a:你們是幾塊幾塊的分的?
b:每人每次分得多少塊餅?
c:分了幾次,共分了多少塊?***就是3個塊就是幾塊***
d:怎樣才能看出是幾塊?
問題的提出針對性強,有利於學生把握數學的本質。
三、 用發展的思維去理解所學的知識,注重了知識的系統性。
數學知識不是孤立的,而是密切聯絡的,只有把知識放在一個完整的系統中,學生的研究才是有意義的。比如學生在應用分數與除法的關係練習時對於0.7÷2=,部分學生會覺著的表示方法是不行的,教師解釋:這種分數形式平時並不常見,隨著今後的學習,大家就能把它轉化成常見的分數形式。
同分母分數加減法教學反思