人教版解方程教案

General 更新 2025年01月22日

  在小學五年級數學教學的過程中,解方程教學在其中有著十分重要的意義,接下來小編為你整理了,一起來看看吧。

  

  學習內容:人教版五年級上冊P57-59頁

  學習目標:

  1、通過操作、演示,進一步理解等式的性式,並能用等式的性質解簡單的方程,在解方程的過程中,初步理解方程的解與解方程。

  2、通過創設情境,經歷從具體抽象為代數問題的過程,滲透代數化思想,並通過驗算,促進良好學習習慣的養成。

  3、在觀察、猜想、驗證等數學活動中,發展學生的數學素養。

  學習重點:用等式的的性質解方程,理解算理

  學習過程:

  一、創設情境,引出方程

  1、研究例1:

  猜球遊戲:出示一個乒乓球盒,猜裡面有幾個球?引導學生用字母來表示球數?

  X

  導語:要想精確知道多少個球?再給大家一些資訊***課件出示:天平左邊盒子和二個球,右邊有七個球***

  設問:能用一個方程來表示嗎?板書X+2=6

  二、探究算理

  設問:你們知道X等於多少嗎?那這個答案4你們是怎麼想出來的嗎?說說你們的想法?

  預設:a、7-4=2;b、4+2=7,所以x=4,c、左右二邊都拿掉二個乒乓球,右邊還剩下4個,所以x=4

  研究第三種想法:設問:左右同時拿個二個乒乓球天平會怎麼樣?

  學生上臺用天平演示

  請學生們把剛才的過程用式子表示出來,板書:X+2-2=6-2

  追問:你怎麼想到是拿到二個乒乓球,而不是拿到一個或者三個呢?

  嘗試驗算:板書:左邊=4+2=6=右邊,所以我們就說X=4是方程的解,板書方程的解,嘗試說說方程的解;剛才我們求方程的解的過程叫做解方程。***可以自學書本***

  講解解方程的書寫格式***與天平相對應***

  小結:剛才我們用了好多方法來解方程,重點研究了第三種解方程的方法,這種方法我們用到了什麼知識?課件再次演示後,得出方程的兩邊同時去掉相同的數,左右兩邊仍相等。

  嘗試:解方程:X-1=3,

  想一想:如果要用天平的乒乓球,如何來表示出這個方程?

  指名擺一擺,學生嘗試解決,並用操作來驗證

  2、研究例2:3X=18

  學生嘗試後出示:3X÷3=12÷3

  用小棒操作後交流後想法:方程的左右二同時除以一個相同的數***零除外***,左右二邊仍舊相等。

  展示,課件演示後小結:方程的左右二邊可以同時除以相同的數***零除外***,左右二邊仍舊相等,追問得到還可以同時乘以一個相同的數

  總結:解方程時,我們都是想使方程的一邊只剩下一個X,而且在這個過程中還要使方程保持平衡,我們可以採用……

  三、鞏固練習:

  1、P59頁1

  2、後面括號中哪個是x的值是方程的解?

  ***1***x+32=76 ***x=44, x=108***

  ***2***12-x=4 ***x=16, x=8***

  3、解方程

  P59頁第2題的前面四題,要求口頭驗算

  四、總結:

  五、機動:研究練習2中的第二題,怎麼用今天的方法來解方程。

  讓"天平"植入解方程中

  《解簡易方程》是數與代數領域中的一個重要內容,是“代數”教學的起始單元,對於滲透與發展學生的代數化思想有著極其重要的作用。本節課教材在編寫上為了實現中小學的銜接,改變了以往利用“加減法逆運算和乘除法逆運算”而是利用天平原理即等式的性質來解方程,由於學生在前面已經積累了大量的感性經驗***逆運算***來解方程,對於今天運用天平的原理來解方程,造成了極大的干擾,所以在本節課中我力圖直觀,讓學生在直觀的操作與演示中自主建構。同時藉助觀察、操作、猜想與驗證,一方面來促使學生進一步理解等式的性質,能利用等式的性質來解方程,同時也讓學生抽象方程,解釋算理中來經歷代數的過程,發展學生的數感及數學素養。

  1、在具體情境中理解算理,經歷代數的過程。

  新課程在數與代數的編排中最大的變化是取消了單獨的應用題編排,而是把應用與計算緊密的結合起來編排,每一個內容都是以主題圖的形式來呈現,主要的是目的是讓學生在具休的情境中理解算理,同時也在計算教學中培養學生的應用意識。本節課屬於典型的計算課,所以算理與演算法是二條主線,今天的演算法主要是突破學生原有的認知,能夠利用天平的原理來解方程,所以理解算理,讓學生體驗到解方程只要使天平的一邊剩下一個未知數,但要在這個變化中必須使天平保持平衡,可以通過在天平的左右二邊同時加上、減去、乘以或者除以相同的數是本節課的重點。我通過創設情境,通過天平上的乒乓球的移動和補湊,來理解算理,而後利用小棒和棋子自己來解釋說明算理,突顯出本節課的重點。同時在情境的創設中,通過猜球,與天平的呈現資訊,讓學生經歷由直觀的生活抽象為化數化的過程,從中滲透化數化的思想。

  2、在直觀操作中掌握方法,發展數學素養。

  新課程標準指出“學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內 容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動,讓學生親身經歷將實際問題抽象成數學模型並進行解釋與應用的過程,進而使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到進步和發展。”在本節課中,通過充分的直觀,利用學生熟悉的乒乓球、小棒等素材,力圖把方程建構於天平之中,通過匯入時從直觀到抽象,再到嘗試時從抽象的式子分別直觀的乒乓球與小棒來表示,打通天平與方程之間的關係,在學生的頭腦中建立深刻的模像。同時,在讓學生用自己的生活,用自己的圖畫,用自己的操作解釋、驗證中發展學生的數學素養。

  二點困惑:

  1、縱觀學生的起點,他們已經具有豐富的生活經驗與知識背景來解簡單的方程,所以在教學中運用“逆運算”來解方程對於採用天平的原理來解方程造成了相當的衝突,部分學生雖然對於運用天平原理來解方程已經十分理解,但他們還是不願意用這種方法,主要的原因是他們體驗不到這種方法的優越性,所以如何在本節課中讓學生體驗到天平原理的優越性,從而自願的採用這種方法,沒有好的策略?

  2、教材中迴避了a-x=b與a/x=b二種方程,但在實踐中經常要碰到,教師如何來解決這個問題?

  一點遺憾:這節課在構思加入了大量的操作活動和直觀材料,主要的目的是讓學生解方程的過程中在學生的頭腦中植入天平,並給學生以自我解釋與驗證的機會,但操作的作用在每一次實踐中都沒有得到最大化的發揮,如何來提高操作的效性,讓操作的目標更明確,是以後這節課研討中重點商切的問題。

  人教版解方程教學反思

  在過去教學解方程,沒有規定一定要用等式的性質解方程,可以根據方程形式選擇利用逆運算關係求未知數。學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關係,這樣學生對算理的理解也容易,學生也能很快求出方程的解。根據2011版《數學課程標準》的要求,新教材要求以等式的基本性質為基礎匯出解方程的方法,不再講解利用逆運算關係求未知數。說是避免了同一內容兩種思路、兩種算理解釋的現象,有利於改善和加強中小學數學的銜接。

  由於有了前面的教學經驗,在初次接觸新教材時總覺得只限用等式的性質解方程比較麻煩。為了轉變自己的教學思想,更新教學觀念,我深入的研究了教材。在教學中通過天平直觀演示天平兩邊同時放上或拿掉相同重量的東西,天平仍然保持平衡,引導學生髮現、小結出等式的性質。不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此性質來解方程。通過教學發現小學生對以天平為直觀形象載體的等式性質,感到新奇,有趣,樂意接受,也易理解。利用天平這樣的事物原形來揭示等式的性質,把抽象的解方程的過程用形象化的方式表現出來,使學生更好的理解解方程的過程是一個等式的恆等變形。

  困惑的是在教學中運用等式的性質解方程,發現學生對解形如:x+a=b、x-a=b ax=b、 x÷a=b的方程做得很好,而且很樂意用等式的性質來解方程,但對形如:a-x =b a÷x =b這樣的方程,在依據等式的性質進行變形時,學生容易出錯,感到麻煩,部分學生感到困難。但是用減法和除法各部分之間的關係解答就比較簡單,所以個人感覺這種方法存在著侷限性。在計算教學中一直都倡導演算法多樣化,因為要改善和加強中小學數學的銜接在這卻避開了演算法多樣化。要不就把形如 a-x =b a÷x =b 這樣的方程放到中學再學。

  雖然對新教材內容的編排有困惑,但為了讓學生更好的理解與掌握解方程的方法,我還是下了功夫研究教學方法,並在課後做了大量的輔導工作,接下來也會一邊學習新內容,一邊複習解方程相關知識。


人教版九年級思品學會合理消費教案
人教版金色的草地教案
相關知識
人教版解方程教案
人教版五年級解方程教案
小學數學解方程教學反思
小學數學解方程教學反思
一元二次方程教案人教版_一元二次方程專題練習
人教版六年級解方程試題
人教版簡易方程教案
人教版新課程小學語文第四冊教案
人教版新課程小學五年級語文課文教案
二年級音樂人教版貓虎歌教案