雷聲是怎樣形成的

General 更新 2025年01月07日

  對雷聲訊號的研究可以追溯到大約100年前,那麼?小編在此整理了雷聲形成的原因,供大家參閱,希望大家在閱讀過程中有所收穫!

  雷聲形成的原因

  伴隨閃電而來的,是隆隆的雷聲。聽起來,雷聲可以分為三種。一種是清脆響亮,像爆炸聲一樣的雷聲,一般叫做“炸雷”;另一種是沉悶的轟隆聲,有人叫它做“悶雷”。還有一種低沉而經久不歇的隆隆聲,有點兒象推磨時發出的聲響。人們常把它叫做“拉磨雷”,實際上是悶雷的一種形式。人們常說的炸雷,一般是距觀測者很近的雲對地閃電所發出的聲音。在這種情況下,觀測者在見到閃電之後,幾乎立即就聽到雷聲;有時甚至在閃電同時即聽見雷聲。因為閃電就在觀測者附近,它所產生的爆炸波還來不及演變成普通聲波,所以聽起來猶如爆炸聲一般。

  閃電通路中的空氣突然劇烈增熱,使它的溫度高達15000—20000℃,因而造成空氣急劇膨脹,通道附近的氣壓可增至一百個大氣壓以上。緊接著,又發生迅速冷卻,空氣很快收縮,壓力減低。這一驟脹驟縮都發生在千分之幾秒的短暫時間內,所以在閃電爆發的一剎那間,會產生衝擊波。衝擊波以5000米/秒的速度向四面八方傳播,在傳播過程中,它的能量很快衰減,而波長則逐漸增長。在閃電發生後0.1—0.3秒,衝擊波就演變成聲波,這就是我們聽見的雷聲。 在雷雨天氣中,上升氣流和下降氣流推動水分子互相作用,釋放出電子從而增強了電場強度,這些電子最終以接近光速的速度穿越空氣。依據德懷爾的閃電形成理論,這些高速電子在電場中伽馬射線或者X射線釋放的能量作用下,與大氣層其他微粒發生碰撞便產生強大的雷鳴聲,並釋放出電荷。

  雷電閃電發生過程

  雷雨雲所產生的閃電,與上面所說的弧光放電非常相似,只不過閃電是轉瞬即逝,而電極之間的火花卻可以長時間存在。因為在兩根電極之間的高電壓可以人為地維持很久,而雷雨雲中的電荷經放電後很難馬上補充。當聚集的電荷達到一定的數量時,在雲內不同部位之間或者雲與地面之間就形成了很強的電場。電場強度平均可以達到幾千伏特/釐米,區域性區域可以高達1萬伏特/釐米。這麼強的電場,足以把雲內外的大氣層擊穿,於是在雲與地面之間或者在雲的不同部位之間以及不同雲塊之間激發出耀眼的閃光。這就是人們常說的閃電。

  肉眼看到的一次閃電,其過程是很複雜的。當雷雨雲移到某處時,雲的中下部是強大負電荷中心,雲底相對的下墊面變成正電荷中心,在雲底與地面間形成強大電場。在電荷越積越多,電場越來越強的情況下,雲底首先出現大氣被強烈電離的一段氣柱,稱梯級先導。這種電離氣柱逐級向地面延伸,每級梯級先導是直徑約5米、長50米、電流約100安培的暗淡光柱,它以平均約150000米/秒的高速度一級一級地伸向地面,在離地面5—50米左右時,地面便突然向上回擊,回擊的通道是從地面到雲底,沿著上述梯級先導開闢出的電離通道。回擊以5萬公里/秒的更高速度從地面馳向雲底,發出光亮無比的光柱,歷時40微秒,通過電流超過1萬安培,這即第一次閃擊。相隔百分之幾秒之後,從雲中一根暗淡光柱,攜帶巨大電流,沿第一次閃擊的路徑飛馳向地面,稱直竄先導,當它離地面5—50米左右時,地面再向上回擊,再形成光亮無比光柱,這即第二次閃擊。接著又類似第二次那樣產生第三、四次閃擊。通常由3—4次閃擊構成一次閃電過程。一次閃電過程歷時約0.25秒,在此短時間內,窄狹的閃電通道上要釋放巨大的電能,因而形成強烈的爆炸,產生衝擊波,然後形成聲波向四周傳開,這就是雷聲或說“打雷”。

雷聲怎樣形成的
雷聲是怎樣形成的
相關知識
雷聲是怎樣形成的
雷聲是怎樣形成的
打雷雷聲是怎麼形成的
雷電是怎樣形成的呢
雷聲是怎麼形成的
雷雨是怎樣形成的
打雷是怎樣形成的打雷的成因是什麼
打雷是怎樣形成的打雷的成因是什麼
雷是怎樣形成的
雷是怎樣形成的