初一上數學知識點總結
在七年級數學認知結構中,數學思想方法和科學的思維方法起著決定戰略方向的作用。以下是小編為大家整理的,希望你們喜歡。
第一章 有理數
1.1 正數與負數
①正數:大於0的數叫正數。***根據需要,有時在正數前面也加上“+”***
②負數:在以前學過的0以外的數前面加上負號“—”的數叫負數。與正數具有相反意義。
③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。
注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等
1.2 有理數
1、有理數***1***整數:正整數、0、負整數統稱整數;***2***分數;正分數和負分數統稱分數;
***3***有理數:整數和分數統稱有理數。
2、數軸***1***定義 :通常用一條直線上的點表示數,這條直線叫數軸;
***2***數軸三要素:原點、正方向、單位長度;
***3***原點:在直線上任取一個點表示數0,這個點叫做原點;
***4***數軸上的點和有理數的關係:所有的有理數都可以用數軸上的點表示出來,但數軸上的點,不都是表示有理數。
3、相反數:只有符號不同的兩個數叫做互為相反數。***例:2的相反數是-2;0的相反數是0***
4、絕對值:***1***數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點間的距離。
***2*** 一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
①有理數加法法則:
1、同號兩數相加,取相同的符號,並把絕對值相加。
2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3、一個數同0相加,仍得這個數。
加法的交換律和結合律
②有理數減法法則:減去一個數,等於加這個數的相反數。
1.4 有理數的乘除法
①有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;
任何數同0相乘,都得0;
乘積是1的兩個數互為倒數。
乘法交換律/結合律/分配律
②有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數;
兩數相除,同號得正,異號得負,並把絕對值相除;
0除以任何一個不等於0的數,都得0。
1.5 有理數的乘方
1、求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
2、有理數的混合運演算法則:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
3、把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的範圍為1≤a <10。
第二章 整式的加減
2.1 整式
1、單項式:由數字和字母乘積組成的式子。係數,單項式的次數. 單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關係,即分母中不含有字母,若式子中含有加、減運算關係,其也不是單項式.
2、單項式的係數:是指單項式中的數字因數;
3、單項數的次數:是指單項式中所有字母的指數的和.
4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式裡次數最高項的次數,這裡是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號.
5、它們都是用字母表示數或列式表示數量關係。注意單項式和多項式的每一項都包括它前面的符號。
6、單項式和多項式統稱為整式。
2.2整式的加減
1、同類項:所含字母相同,並且相同字母的指數也相同的項。與字母前面的係數***≠0***無關。
2、同類項必須同時滿足兩個條件:***1***所含字母相同;***2***相同字母的次數相同,二者缺一不可.同類項與係數大小、字母的排列順序無關
3、合併同類項:把多項式中的同類項合併成一項。可以運用交換律,結合律和分配律。
4、合併同類項法則:合併同類項後,所得項的係數是合併前各同類項的係數的和,且字母部分不變;
5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。
6、整式加減的一般步驟:
一去、二找、三合
***1***如果遇到括號按去括號法則先去括號. ***2***結合同類項. ***3***合併同類項
下一頁分享>>>
初一上冊數學知識點整理