數學真美妙手抄報

General 更新 2025年01月27日

  還在為做數學手抄報煩惱嗎?不知道該寫什麼內容,不知道該畫什麼?那麼,小編為大家帶來的,希望大家喜歡。

  圖片欣賞

  圖1

  圖2

  圖3

  圖4

  圖5

  圖6

  資料:數學名言

  1 只要一門科學分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預示著獨立發展的終止或衰亡。——Hilbert

  2 數學是研究抽象結構的理論。——布林巴基學派

  3 宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。——華羅庚

  4 上帝創造了整數,所有其餘的數都是人造的。 ——L·克隆內克

  5 哲學家也要學數學,因為他必須跳出浩如煙海的萬變現象而抓住真正的實質。又因為這是使靈魂過渡到真理和永存的捷徑。——柏拉圖

  6 問題是數學的心臟。——P.R.Halmos

  7 數學的本質在於它的自由。——康扥爾

  8 數學是科學之王。——高斯

  9 數學是開啟科學大門的鑰匙。——培根

  10 數學中的一些美麗定理具有這樣的特性:它們極易從事實中歸納出來,但證明卻隱藏的極深。——高斯

  內容:趣味數學小故事

  一個最普通的火柴遊戲就是兩人一起玩,先置若干支火柴於桌上,兩人輪流取,每次所取的數目可先作一些限制,規定取走最後一根 火柴者獲勝。

  規則一:若限制每次所取的火柴數目最少一根,最多三根,則如何玩才可致勝? 規則一:若限制每次所取的火柴數目最少一根,最多 三根,則如何玩才可致勝? 例如:桌面上有n=15根火柴,甲﹑乙 為了要取得最後一根,甲必須最後留下零根火柴給乙,故在最後一步之前的輪取中,甲不能 留下1根或2根或3根,否則乙就可以全部取走而獲勝。如果留下4根,則乙不能全取,則不管乙取幾根1或2或3,甲必能取得所有剩下的 火柴而贏了遊戲。同理,若桌上留有8根火柴讓乙去取,則無論乙如何取,甲都可使這一次輪取後留下4根火柴,最後也一定是甲獲勝。由上 之分析可知,甲只要使得桌面上的火柴數為4﹑8﹑12﹑16...等讓乙去取,則甲必穩操勝券。因此若原先桌面上的火柴數為15,則甲應取3 根。∵15-3=12若原先桌面上的火柴數為18呢?則甲應先取2根∵18-2=16。

  規則二:限制每次所取的火柴數目為1至4根,則又如何致勝? 原則:若甲先取,則甲每次取時,須留5的倍數的火柴給乙去取。 通則:有n支火柴,每次可取1至k支,則甲每次取後所留的火柴數目必須為 k+1 之倍數。

  規則三:限制每次所取的火柴數目不是連續的數,而是一些 分析:1﹑3﹑7均為奇數,由於目標為0,而0為偶數,所以先取甲,須 使桌上的火柴數為偶數,因為乙在偶數的火柴數中,不可能再取去1﹑3﹑7根火柴後獲得0,但假使如此也不能保證甲必贏,因為甲對於火 柴數的奇或偶,也是無法依照己意來控柴數的奇或偶,也是無法依照己意來控制的。因為〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上 的火柴數奇偶相反。若開始時是奇數,如17,甲先取,則不論甲取多少1或3或7,剩下的便是偶數,乙隨後又把偶數變成奇數,甲又把

  奇數回覆到偶數,最後甲是註定為贏家;反之,若開始時為偶數,則甲註定會輸。

  通則:開局是奇數,先取者必勝;反之,若開局為偶數,則先取者會輸。 通則:開局是奇數,先取者必勝;反之,若開局為偶數,則先取者會輸。

  規則四:限制每次所 分析:如前規則二,若甲先取,則甲每次取時留5的倍數的火柴給乙去取,則甲必勝。此外,若甲留給乙取的 火 柴數為5之倍數加2時,甲也倍數加2時,甲也可贏得遊戲,因為玩的時候可以控制每輪所取的火柴數為5若乙取1,甲則取4;若乙取4,

  則甲取1,最後剩下2根,那時乙只能取1,甲便可取得最後一根而獲勝。

  通則:若甲先取,則甲每次取時所留火柴數為5之倍數或5的倍數加2。 6、韓信點兵 甲先取,則甲每次取時所留火柴 韓信點 兵又稱為中國剩餘定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人 一列餘6人……。劉邦茫然而不知其數。 中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問 剩三,七七數之,剩二,問物幾何?」 答曰:「二十三」書「孫子算經」也有類似的問題 術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩 二,置三十,並之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則 置十五,即得。」 孫子算經的作者及確實著作年代均不可考,不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人 發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩餘定理。中國剩餘定理Chinese Remainder Theorem在近代抽象代數 學中佔有一席非常重要的地位。

  資料:數學謎語

  1 從輕判猜數學名詞一 減法

  2 風箏跑了猜數學名詞一 線段斷

  3 天平猜數學名詞一 對稱

  4 0000打一成語 萬無一失

  5 下完圍棋猜數學名詞一 分子

  6 我先走了猜數學名詞一 不等

  7 健全法制打一數學名詞 圓規

  8 五角錢猜數學名詞一 半圓

  9 兩牛打架猜數學名詞一 對頂角

  10 11∶1打一成語 不相上下


數學之美手抄報圖片
四年級上冊的數學手抄報
相關知識
數學真美妙手抄報
數學真奇妙手抄報
數學統計表手抄報資料和精美圖片簡單字少
學習數學好處多手抄報相關圖片
四年級上冊數學一單元手抄報圖片
數學應用題手抄報
數學迎國慶手抄報圖片簡單又漂亮
關於數學易錯題手抄報資料漂亮圖片
簡單數學易錯題手抄報資料以及圖片
初二數學知識點手抄報

Have any Question?

Let us answer it!