初中二次函式知識點歸納總結
二次函式是一種常見的函式,應用非常廣泛。既然二次函式這麼重要,我們怎麼學好它呢?以下是小編分享給大家的初中二次函式知識點歸納,希望可以幫到你!
初中二次函式知識點歸納
I.定義與定義表示式
一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c
***a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.***則稱y為x的二次函式。
二次函式表示式的右邊通常為二次三項式。
II.二次函式的三種表示式
一般式:y=ax^2+bx+c***a,b,c為常數,a≠0***
頂點式:y=a***x-h***^2+k[拋物線的頂點P***h,k***]
交點式:y=a***x-x₁******x-x₂***[僅限於與x軸有交點A***x₁,0***和B***x₂,0***的拋物線]
注:在3種形式的互相轉化中,有如下關係:
h=-b/2a k=***4ac-b^2***/4a x₁,x₂=***-b±√b^2-4ac***/2a
III.二次函式的影象
在平面直角座標系中作出二次函式y=x^2的影象,可以看出,二次函式的影象是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸***即直線x=0***
2.拋物線有一個頂點P,座標為:P***-b/2a,***4ac-b^2***/4a***當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項係數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項係數b和二次項係數a共同決定對稱軸的位置。
當a與b同號時***即ab>0***,對稱軸在y軸左;
當a與b異號時***即ab<0***,對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於***0,c***
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數***x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a***
V.二次函式與一元二次方程
特別地,二次函式***以下稱函式***y=ax^2+bx+c,
當y=0時,二次函式為關於x的一元二次方程***以下稱方程***,即ax^2+bx+c=0
此時,函式影象與x軸有無交點即方程有無實數根。函式與x軸交點的橫座標即為方程的根。
1.二次函式y=ax^2,y=a***x-h***^2,y=a***x-h***^2+k,y=ax^2+bx+c***各式中,a≠0***的圖象形狀相同,只是位置不同,它們的頂點座標及對稱軸如下表:
當h>0時,y=a***x-h***^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a***x-h***^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a***x-h***^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a***x-h***^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a***x-h***^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c***a≠0***的圖象,通過配方,將一般式化為y=a***x-h***^2+k的形式,可確定其頂點座標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c***a≠0***的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點座標是***-b/2a,[4ac-b^2]/4a***.
3.拋物線y=ax^2+bx+c***a≠0***,若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與座標軸的交點:
***1***圖象與y軸一定相交,交點座標為***0,c***;
***2***當△=b^2-4ac>0,圖象與x軸交於兩點A***x₁,0***和B***x₂,0***,其中的x1,x2是一元二次方程ax^2+bx+c=0
***a≠0***的兩根.這兩點間的距離AB=|x₂-x₁|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0***a<0***,則當x=-b/2a時,y最小***大***值=***4ac-b^2***/4a.
頂點的橫座標,是取得最值時的自變數值,頂點的縱座標,是最值的取值.
6.用待定係數法求二次函式的解析式
***1***當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c***a≠0***.
***2***當題給條件為已知圖象的頂點座標或對稱軸時,可設解析式為頂點式:y=a***x-h***^2+k***a≠0***.
***3***當題給條件為已知圖象與x軸的兩個交點座標時,可設解析式為兩根式:y=a***x-x₁******x-x₂******a≠0***.
7.二次函式知識很容易與其它知識綜合應用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
初中數學解題技巧順口溜
1、有理數的加法運算
同號兩數來相加,絕對值加不變號
異號相加大減小,大數決定和符號
互為相反數求和,結果是零須記好
【注】“大”減“小”是指絕對值的大小
2、有理數的減法運算
減正等於加負,減負等於加正
有理數的乘法運算子號法則
同號得正異號負,一項為零積是零
3、合併同類項
說起合併同類項,法則千萬不能忘
只求係數代數和,字母指數留原樣
4、去、添括號法則
去括號或添括號,關鍵要看連線號
擴號前面是正號,去添括號不變號
括號前面是負號,去添括號都變號
5、解方程
已知未知鬧分離,分離要靠移完成
移加變減減變加,移乘變除除變乘
6、平方差公式
兩數和乘兩數差,等於兩數平方差
積化和差變兩項,完全平方不是它
7、完全平方公式
二數和或差平方,展開式它共三項
首平方與末平方,首末二倍中間放
和的平方加聯結,先減後加差平方
8、完全平方公式
首平方又末平方,二倍首末在中央
和的平方加再加,先減後加差平方
9、解一元一次方程
先去分母再括號,移項變號要記牢
同類各項去合併,係數化“1”還沒好
求得未知須檢驗,回代值等才算了
10、因式分解與乘法
和差化積是乘法,乘法本身是運算
積化和差是分解,因式分解非運算
初中數學學習方法
1、按部就班,環環相扣
數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的程序。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題,一定要把每一個環節都學牢。
2、概念記清,基礎夯實
千萬不要忽視最基本的概念、公理、定理和公式,每新學一個定理或者定義的時候,都要在理解的基礎上去深挖每一個字眼,有時候少說一兩個字,都可能導致結果的不同。要在剛開始學概念的時候就弄清楚,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
3、適當做題,巧做為主
學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉中考的題型,訓練要做到有的放矢。有的同學埋頭題海苦苦掙扎,輔導書做掉一大堆卻鮮有提高,這就是陷入了做題的誤區。數學需要實踐,需要大量做題,但要"埋下頭去做題,抬起頭來想題",在做題中關注思路、方法、技巧,要"苦做"更要"巧做".考試中時間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯。
4、記錄錯題,避免再犯
俗話說,"一朝被蛇咬,十年怕井繩",可是同學們常會一次又一次地掉入相似甚至相同的"陷阱"裡。因此,建議大家在平時的做題中就要及時記錄錯題,更重要的是還要想一想為什麼會錯、以後要特別注意哪些地方,這樣就能避免不必要的失分。畢竟,中考或者在平時考試當中是"分分必爭",一分也失不得。這樣 複習時,這個錯題本也就成了寶貴的複習資料。
5、集中兵力,攻下弱點
每個人都有自己的"軟肋",如果試題中涉及到你的薄弱環節,一定會成為你的最痛。因此一定要通過短時間的專題學習,集中優勢兵力,打一場漂亮的殲滅戰,避免變成"瘸腿".
1.初三二次函式知識點
2.初中數學二次函式教學設計
3.初中數學二次函式教學設計和反思
4.初三數學複習計劃
5.初三數學學習方法與技巧
初中數學二次根式概念歸納