質數是什麼?

General 更新 2024-12-24

什麼是質數

質數(又稱為素數)

1.就是在所有比1大的整數中,除了1和它本身以外,不再有別的因數,這種整數叫做質數。還可以說成質數只有1和它本身兩個約數。2.素數是這樣的整數,它除了能表示為它自己和1的乘積以外,不能表示為任 何其它兩個整數的乘積。例如,15=3*5,所以15不是素數;

又如,12 =6*2=4*3,所以12也不是素數。另一方面,13除了等於13*1以 外,不能表示為其它任何兩個整數的乘積,所以13是一個素數。

[編輯本段]質數的概念

一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數)。例如 2,3,5,7 是質數,而 4,6,8,9 則不是,後者稱為合成數或合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(1不是質數,也不是合數)著名的高斯「唯一分解定理」說,任何一個整數。可以寫成一串質數相乘的積。質數中除2是偶數外,其他都是奇數。

[編輯本段]質數的奧祕

質數的分佈是沒有規律的,往往讓人莫名其妙。如:101、401、601、701都是質數,但上下面的301(7*43)和901(17*53)卻是合數。

有人做過這樣的驗算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……於是就可以有這樣一個公式:設一正數為n,則n^2+n+41的值一定是一個質數。這個式子一直到n=39時,都是成立的。但n=40時,其式子就不成立了,因為40^2+40+41=1681=41*41。

說起質數就少不了哥德巴赫猜想,和著名的“1+1”

哥德巴赫猜想 :(Goldbach Conjecture)

內容為“所有的不小於6的偶數,都可以表示為兩個素數”

這個問題是德國數學家哥德巴赫(C.Goldbach,1690-1764)於1742年6月7日在給大數學家歐拉的信中提出的,所以被稱作哥德巴赫猜想。同年6月30日,歐拉在回信中認為這個猜想可能是真的,但他無法證明。從此,這道數學難題引起了幾乎所有數學家的注意。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的“明珠”。“用當代語言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個素數的和。偶數的猜想是說,大於等於4的偶數一定是兩個素數的和。”(引自《哥德巴赫猜想與潘承洞》)

哥德巴赫猜想貌似簡單,要證明它卻著實不易,成為數學中一個著名的難題。18、19世紀,所有的數論專家對這個猜想的證明都沒有作出實質性的推進,直到20世紀才有所突破。直接證明哥德巴赫猜想不行,人們採取了“迂迴戰術”,就是先考慮把偶數表為兩數之和,而每一個數又是若干素數之積。如果把命題"每一個大偶數可以表示成為一個素因子個數不超過a個的數與另一個素因子不超過b個的數之和"記作"a+b",那麼哥氏猜想就是要證明"1+1"成立。

1900年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把“哥德巴赫猜想”列為23個數學難題之一。此後,20世紀的數學家們在世界範圍內“聯手”進攻“哥德巴赫猜想”堡壘,終於取得了輝煌的成果。

到了20世紀20年代,有人開始向它靠近。1920年,挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比6大的偶數都可以表示為(9+9)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數裡所含質數因子的個數,直到最後使每個數裡都是一個質數為止,這樣就證......

質數是什麼意思?

什麼是質數?就是在所有比1大的整數中,除了1和它本身以外,不再有別的約數,這種整數叫做質數,質數又叫做素數。還可以說成質數有兩個約數。這終規只是文字上的解釋而已。能不能有一個代數式,規定用字母表示的那個數為規定的任何值時,所代入的代數式的值都是質數呢?

質數的分佈是沒有規律的,往往讓人莫名其妙。如:101、401、601、701都是質數,但上下面的301(7*43)和901(17*53)卻是合數。

有人做過這樣的驗算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……於是就可以有這樣一個公式:設一正數為n,則n^2+n+41的值一定是一個質數。這個式子一直到n=39時,都是成立的。但n=40時,其式子就不成立了,因為40^2+40+41=1681=41*41。

被稱為“17世紀最偉大的法國數學家”費爾馬,也研究過質數的性質。他發現,設Fn=2^(2^n),則當n分別等於0、1、2、3、4時,Fn分別給出3、5、17、257、65537,都是質數,由於F5太大(F5=4292967297),他沒有再往下檢測就直接猜測:對於一切自然數,Fn都是質數。但是,就是在F5上出了問題!費爾馬死後67年,25歲的瑞士數學家歐拉證明:F5=4292967297=641*6700417,並非質數,而是合數。

更加有趣的是,以後的Fn值,數學家再也沒有找到哪個Fn值是質數,全部都是合數。目前由於平方開得較大,因而能夠證明的也很少。現在數學家們取得Fn的最大值為:n=1495。這可是個超級天文數字,其位數多達10^10584位,當然它儘管非常之大,但也不是個質數。質數和費爾馬開了個大玩笑!

17世紀還有位法國數學家叫梅森,他曾經做過一個猜想:2^p-1代數式,當p是質數時,2^p-1是質數。他驗算出了:當p=2、3、5、7、17、19時,所得代數式的值都是質數,後來,歐拉證明p=31時,2^p-1是質數。 p=2,3,5,7時,Mp都是素數,但M11=2047=23×89不是素數。

還剩下p=67、127、257三個梅森數,由於太大,長期沒有人去驗證。梅森去世250年後,美國數學家科勒證明,2^67-1=193707721*761838257287,是一個合數。這是第九個梅森數。20世紀,人們先後證明:第10個梅森數是質數,第11個梅森數是合數。質數排列得這樣雜亂無章,也給人們尋找質數規律造成了困難。

工 現在,數學家找到的最大的梅森數是一個有9808357位的數:2^32582657-1。數學雖然可以找到很大的質數,但質數的規律還是無法循通。

素數是什麼意思?

質數又稱素數。指在一個大於1的自然數中,除了1和此整數自身外,沒法被其他自然數整除的數。換句話說,只有兩個正因數(1和自己)的自然數即為素數。比1大但不是素數的數稱為合數。1和0既非素數也非合數。合數是由若干個質數相乘而得到的。所以,質數是合數的基礎,沒有質數就沒有合數。這也說明了前面所提到的質數在數論中有著重要地位。歷史上曾將1也包含在質數之內,但後來為了算術基本定理,最終1被數學家排除在質數之外,而從高等代數的角度來看,1是釘法單位元,也不能算在質數之內,並且,所有的合數都可由若干個質數相乘而得到。

參考資料:百度百科

什麼是質數?

質數(又稱為素數)

1.就是在所有比1大的整數中,除了1和它本身以外,不再有別的因數,這種整數叫做質數。還可以說成質數只有1和它本身兩個約數。2.素數是這樣的整數,它除了能表示為它自己和1的乘積以外,不能表示為任 何其它兩個整數的乘積。例如,15=3*5,所以15不是素數;

又如,12 =6*2=4*3,所以12也不是素數。另一方面,13除了等於13*1以 外,不能表示為其它任何兩個整數的乘積,所以13是一個素數。

[編輯本段]質數的概念

一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數)。例如 2,3,5,7 是質數,而 4,6,8,9 則不是,後者稱為合成數或合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(1不是質數,也不是合數)著名的高斯「唯一分解定理」說,任何一個整數。可以寫成一串質數相乘的積。質數中除2是偶數外,其他都是奇數。

[編輯本段]質數的奧祕

質數的分佈是沒有規律的,往往讓人莫名其妙。如:101、401、601、701都是質數,但上下面的301(7*43)和901(17*53)卻是合數。

有人做過這樣的驗算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……於是就可以有這樣一個公式:設一正數為n,則n^2+n+41的值一定是一個質數。這個式子一直到n=39時,都是成立的。但n=40時,其式子就不成立了,因為40^2+40+41=1681=41*41。

說起質數就少不了哥德巴赫猜想,和著名的“1+1”

哥德巴赫猜想 :(Goldbach Conjecture)

內容為“所有的不小於6的偶數,都可以表示為兩個素數”

這個問題是德國數學家哥德巴赫(C.Goldbach,1690-1764)於1742年6月7日在給大數學家歐拉的信中提出的,所以被稱作哥德巴赫猜想。同年6月30日,歐拉在回信中認為這個猜想可能是真的,但他無法證明。從此,這道數學難題引起了幾乎所有數學家的注意。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的“明珠”。“用當代語言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個素數的和。偶數的猜想是說,大於等於4的偶數一定是兩個素數的和。”(引自《哥德巴赫猜想與潘承洞》)

哥德巴赫猜想貌似簡單,要證明它卻著實不易,成為數學中一個著名的難題。18、19世紀,所有的數論專家對這個猜想的證明都沒有作出實質性的推進,直到20世紀才有所突破。直接證明哥德巴赫猜想不行,人們採取了“迂迴戰術”,就是先考慮把偶數表為兩數之和,而每一個數又是若干素數之積。如果把命題"每一個大偶數可以表示成為一個素因子個數不超過a個的數與另一個素因子不超過b個的數之和"記作"a+b",那麼哥氏猜想就是要證明"1+1"成立。

1900年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把“哥德巴赫猜想”列為23個數學難題之一。此後,20世紀的數學家們在世界範圍內“聯手”進攻“哥德巴赫猜想”堡壘,終於取得了輝煌的成果。

到了20世紀20年代,有人開始向它靠近。1920年,挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比6大的偶數都可以表示為(9+9)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數裡所含質數因子的個數,直到最後使每個數裡都是一個質數為止,這樣就證明了“哥德巴赫猜想”。

1920年,挪威的布朗(B......

數學中的質數是什麼

質數(prime number)又稱素數,有無限個。一個大於1的自然數,除了1和它本身外,不能被其他自然數整除,換句話說就是該數除了1和它本身以外不再有其他的因數;否則稱為合數。

根據算術基本定理,每一個比1大的整數,要麼本身是一個質數,要麼可以寫成一系列質數的乘積;而且如果不考慮這些質數在乘積中的順序,那麼寫出來的形式是唯一的。最小的質數是2。

目前為止,人們未找到一個公式可求出所有質數。

相關問題答案
質數是什麼有那些?
因數和質數是什麼意思?
最小的質數是什麼意思?
數學中質數是什麼意思?
質數是什麼?
質數合數是什麼意思?
質因數是什麼?
物質的量分數是什麼?
質因數是什麼意思舉例?
質因數是什麼意思?