不是具有相反意義的量?

General 更新 2025-01-20

下面不是具有相反意義的量是?原因

做此題,可以省略數字不看,僅看其列出的例子,A是深長和縮短,是反意義,排除。B是前和左,不是反意義,所以答案是這個選項。C是手錶的快慢,排除。D是飛機的下降和上升,也排除。所以答案是B。希望能幫到你。

5對具有意義相反的量

1,零上10攝氏度和零下10攝氏度

2,收入100元和支出100元

3,向東走100米和向西走100米4,水位升高1.2米和下降1.2米

5,買進100輛自行車和賣出100輛自行車

具有相反意義的量必須是

負數的由來

人們在生活中經常會遇到各種相反意義的量。比如,在記賬時有餘有虧;在計算糧倉存米時,有時要記進糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數來表示。於是人們引入了正負數這個概念,把餘錢進糧食記為正,把虧錢、出糧食記為負。可見正負數是生產實踐中產生的。

據史料記載,早在兩千多年前,我國就有了正負數的概念,掌握了正負數的運算法則。人們計算的時候用一些小竹棍擺出各種數字來進行計算。比如,356擺成||| ,3056擺成等等。這些小竹棍叫做“算籌”算籌也可以用骨頭和象牙來製作。

我國三國時期的學者劉徽在建立負數的概念上有重大貢獻。劉徽首先給出了正負數的定義,他說:“今兩算得失相反,要令正負以名之。”意思是說,在計算過程中遇到具有相反意義的量,要用正數和負數來區分它們。

劉徽第一次給出了正負區分正負數的方法。他說:“正算赤,負算黑;否則以邪正為異”意思是說,用紅色的小棍擺出的數表示正數,用黑色的小棍擺出的數表示負數;也可以用斜擺的小棍表示負數,用正擺的小棍表示正數。

我國古代著名的數學專著《九章算術》(成書於公元一世紀)中,最早提出了正負數加減法的法則: “正負數曰:同名相除,異名相益,正無入負之,負無入正之;其異名相除,同名相益,正無入正之,負無入負之。”這裡的“名”就是“號”,“除”就是 “減”,“相益”、“相除”就是兩數的絕對值“相加”、“相減”,“無”就是“零”。

用現在的話說就是:“正負數的加減法則是:同符號兩數相減,等於其絕對值相減,異號兩數相減,等於其絕對值相加。零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減,同號兩數相加,等於其絕對值相加。零加正數等於正數,零加負數等於負數。”

這段關於正負數的運算法則的敘述是完全正確的,與現在的法則完全一致!負數的引入是我國數學家傑出的貢獻之一。

用不同顏色的數表示正負數的習慣,一直保留到現在。現在一般用紅色表示負數,報紙上登載某國經濟上出現赤字,表明支出大於收入,財政上虧了錢。

負數是正數的相反數。在實際生活中,我們經常用正數和負數來表示意義相反的兩個量。夏天武漢氣溫高達42°C,你會想到武漢的確象火爐,冬天哈爾濱氣溫-32°C一個負號讓你感到北方冬天的寒冷。

在現今的中小學教材中,負數的引入,是通過算術運算的方法引入的:只需以一個較小的數減去一個較大的數,便可以得到一個負數。這種引入方法可以在某種特殊的問題情景中給出負數的直觀理解。而在古代數學中,負數常常是在代數方程的求解過程中產生的。對古代巴比倫的代數研究發現,巴比倫人在解方程中沒有提出負數根的概念,即不用或未能發現負數根的概念。3世紀的希臘學者丟番圖的著作中,也只給出了方程的正根。然而,在中國的傳統數學中,已較早形成負數和相關的運算法則。

除《九章算術》定義有關正負運算方法外,東漢末年劉烘(公元206年)、宋代揚輝(1261 年)也論及了正負數加減法則,都與九章算術所說的完全一致。特別值得一提的是,元代朱世傑除了明確給出了正負數同號異號的加減法則外,還給出了關於正負數的乘除法則。他在算法啟蒙中,負數在國外得到認識和被承認,較之中國要晚得多。在印度,數學家婆羅摩笈多於公元628年才認識負數可以是二次方程的根。而在歐洲14世紀最有成就的法國數學家丘凱把負數說成是荒謬的數。直到十七世紀荷蘭人日拉爾(1629年)才首先認識和使用負數解決幾何問題。

與中國古代數學家不同,西方數學家更多的是研究負數存在的合理性。16、17世紀歐洲大多數數學家不承認負數是數。帕斯卡認為從0......

相關問題答案
不是具有相反意義的量?
相反意義的量的概念?
具有教育意義的故事?
具有教育意義的微電影?
具有國際意義的紀錄片?
具有教育意義的短片?
帶有相反意思的成語?
具有教育意義的課本劇?
具有諷刺意義的漫畫?
具有重要意義英文?