什麼是配位鍵?
配位鍵是什麼?
配位鍵
coordination bond
一種共價鍵。成鍵的兩原子間共享的兩個電子不是由兩原子各提供一個,而是來自一個原子。例如氨和三氟化硼可以形成配位化合物:圖片式中→表示配位鍵。在N和B之間的一對電子來自N原子上的孤對電子。
配位鍵是極性鍵,電子總是偏向一方,根據極性的強弱,或接近離子鍵,或接近極性共價鍵。在一些配合物中,除配體向受體提供電子形成普通配位鍵外,受體的電子也向配體轉移形成反饋配鍵 。例如Ni(CO)4中CO中碳上的孤對電子向鎳原子配位形成σ配位鍵 ,鎳原子的d電子則反過來龔向CO的空π*反鍵軌道,形成四電子三中心d-pπ鍵,就是反饋配鍵。非金屬配位化合物中也可能存在這種鍵。配位鍵可用以下3種理論來解釋:
①價鍵理論。認為配體上的電子進入中心原子的雜化軌道。例如鈷(Ⅲ)的配合物。〔CoF6〕3-中F的孤對電子進入Co3+的sp3d2雜化軌道,這種配合物稱為外軌配合物或高自旋配合物,有4個未成對電子,因而是順磁性的。〔Co(NH3)-6〕3+中NH3的孤對電子進入Co3+的d2sp3雜化軌道 ,這種配合物稱為內軌配合物或低自旋配合物,由於所有電子都已成對,因而沒有順磁性而為抗磁性。
②晶體場理論。將配體看作點電荷或偶極子,同時考慮配體產生的靜電場對中心原子的原子軌道能級的影響。例如,把中心原子引入位於正八面體6個頂角上的6個配體中,原來五重簡併的d軌道就分裂成一組二重簡併的eg(-y2、dz2)軌道和一組三重簡併的t2g(dxy、dxz、dyz)軌道 。eg和t2g軌道的能量差 ,稱為分離能Δ0,Δ0≡10Dq,Dq稱為場強參量。在上述鈷(Ⅲ)配合物中,6個F-產生的場不強,Δ0較小,d電子按照洪德規則排布,有四個未成對電子,因而〔CoF6〕3-為弱場配合物或高自旋配合物 。6個NH3產生的場較強,Δ0較大,d電子按照能量最低原則和泡利原理排布,沒有未成對電子 ,因而〔Co(NH3)6〕3+為強場配合物或低自旋配合物。
③分子軌道理論 。假定電子是在分子軌道中運動,應用群論或根據成鍵的基本原則就可得出分子軌道能級圖。再把電子從能量最低的分子軌道開始按照泡利原理逐一填入,即得分子的電子組態。分子軌道分為成鍵軌道和反鍵軌道。分子的鍵合程度取決於分子中成鍵電子數與反鍵電子數之差。
參考資料:百度百科
什麼是配位鍵?
就是一個共價鍵中的倆個電子都是由某個原子提供的,不是通常的共價鍵那樣各提供一個,這種鍵長骸在於金屬的配合物中,如
[Ag(NH3)2]+ , [Cu(H2O)6]2+等 這裡NH3與Ag+離子就是靠配位鍵結合的,H2O與Cu2+也一樣
什麼叫配位鍵?
配位鍵
配位鍵
coordination bond
一種共價鍵。成鍵的兩原子間共享的兩個電子不是由兩原子各提供一個,而是來自一個原子。例如氨和三氟化硼可以形成配位化合物:圖片式中→表示配位鍵。在N和B之間的一對電子來自N原子上的孤對電子。
配位鍵是極性鍵,電子總是偏向一方,根據極性的強弱,或接近離子鍵,或接近極性共價鍵。在一些配合物中,除配體向受體提供電子形成普通配位鍵外,受體的電子也向配體轉移形成反饋配鍵 。例如Ni(CO)4中CO中碳上的孤對電子向鎳原子配位形成σ配位鍵 ,鎳原子的d電子則反過來流向CO的空π*反鍵軌道,形成四電子三中心d-pπ鍵,就是反饋配鍵。非金屬配位化合物中也可能存在這種鍵。配位鍵可用以下3種理論來解釋:
①價鍵理論。認為配體上的電子進入中心原子的雜化軌道。例如鈷(Ⅲ)的配合物。〔CoF6〕3-中F的孤對電子進入Co3+的sp3d2雜化軌道,這種配合物稱為外軌配合物或高自旋配合物,有4個未成對電子,因而是順磁性的。〔Co(NH3)-6〕3+中NH3的孤對電子進入Co3+的d2sp3雜化軌道 ,這種配合物稱為內軌配合物或低自旋配合物,由於所有電子都已成對,因而沒有順磁性而為抗磁性。
②晶體場理論。將配體看作點電荷或偶極子,同時考慮配體產生的靜電場對中心原子的原子軌道能級的影響。例如,把中心原子引入位於正八面體6個頂角上的6個配體中,原來五重簡併的d軌道就分裂成一組二重簡併的eg(-y2、dz2)軌道和一組三重簡併的t2g(dxy、dxz、dyz)軌道 。eg和t2g軌道的能量差 ,稱為分離能Δ0,Δ0≡10Dq,Dq稱為場強參量。在上述鈷(Ⅲ)配合物中,6個F-產生的場不強,Δ0較小,d電子按照洪德規則排布,有四個未成對電子,因而〔CoF6〕3-為弱場配合物或高自旋配合物 。6個NH3產生的場較強,Δ0較大,d電子按照能量最低原則和泡利原理排布,沒有未成對電子 ,因而〔Co(NH3)6〕3+為強場配合物或低自旋配合物。
③分子軌道理論 。假定電子是在分子軌道中運動,應用群論或根據成鍵的基本原則就可得出分子軌道能級圖。再把電子從能量最低的分子軌道開始按照泡利原理逐一填入,即得分子的電子組態。分子軌道分為成鍵軌道和反鍵軌道。分子的鍵合程度取決於分子中成鍵電子數與反鍵電子數之差。