初中數學知識點歸納整理

General 更新 2025年01月08日

  為了方便同學們的複習,小編特意為大家整理提供了初中數學的知識點總結,還在猶豫什麼趕緊跟小編一起來看看吧!

  初中數學知識點

  全等三角形

  一.知識框架

  二.知識概念

  1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動或稱變換使之與另一個重合,這兩個三角形稱為全等三角形。

  2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。

  3.三角形全等的判定公理及推論有:

  1“邊角邊”簡稱“SAS”

  2“角邊角”簡稱“ASA”

  3“邊邊邊”簡稱“SSS”

  4“角角邊”簡稱“AAS”

  5斜邊和直角邊相等的兩直角三角形HL。

  4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

  5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關係,②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式順序和對應關係從已知推匯出要證明的問題.

  在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。

  軸對稱

  一.知識框架

  二.知識概念

  1.對稱軸:如果一個圖形沿某條直線摺疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

  2.性質: 1軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

  2角平分線上的點到角兩邊距離相等。

  3線段垂直平分線上的任意一點到線段兩個端點的距離相等。

  4與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

  5軸對稱圖形上對應線段相等、對應角相等。

  3.等腰三角形的性質:等腰三角形的兩個底角相等,等邊對等角

  4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

  5.等腰三角形的判定:等角對等邊。

  6.等邊三角形角的特點:三個內角相等,等於60°,

  7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。

  有一個角是60°的等腰三角形是等邊三角形

  有兩個角是60°的三角形是等邊三角形。

  8.直角三角形中,30°角所對的直角邊等於斜邊的一半。

  9.直角三角形斜邊上的中線等於斜邊的一半。

  本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑑賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。

  實數

  一.知識框架

  二.知識概念

  1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

  2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。

  3.正數有兩個平方根一正一負它們互為相反數;0只有一個平方根,就是它本身;負數沒有平方根。

  4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。

  5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

  實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;瞭解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。

  一次函式

  一.知識框架

  二.知識概念

  1.一次函式:若兩個變數x,y間的關係式可以表示成y=kx+bk≠0的形式,則稱y是x的一次函式x為自變數,y為因變數。特別地,當b=0時,稱y是x的正比例函式。

  2.正比例函式一般式:y=kxk≠0,其圖象是經過原點0,0的一條直線。

  3.正比例函式y=kxk≠0的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函式y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。

  4.已知兩點座標求函式解析式:待定係數法

  一次函式是初中學生學習函式的開始,也是今後學習其它函式知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。

  整式的乘除與分解因式

  一.知識概念

  1.同底數冪的乘法法則: m,n都是正數

  2.. 冪的乘方法則: m,n都是正數

  3. 整式的乘法

  1 單項式乘法法則:單項式相乘,把它們的係數、相同字母分別相乘,對於只在一個單項式裡含有的字母,連同它的指數作為積的一個因式。

  2單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

  3.多項式與多項式相乘

  多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

  4.平方差公式:

  5.完全平方公式:

  6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 a≠0,m、n都是正數,且m>n.

  在應用時需要注意以下幾點:

  ①法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a≠0.

  ②任何不等於0的數的0次冪等於1,即 ,如 ,-2.50=1,則00無意義.

  ③任何不等於0的數的-p次冪p是正整數,等於這個數的p的次冪的倒數,即 a≠0,p是正整數, 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,

  ④運算要注意運算順序.

  7.整式的除法

  單項式除法單項式:單項式相除,把係數、同底數冪分別相除,作為商的因式,對於只在被除式裡含有的字母,則連同它的指數作為商的一個因式;

  多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.

  8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

  分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法

  分解因式的步驟:1先看各項有沒有公因式,若有,則先提取公因式;

  2再看能否使用公式法;

  3用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

  4因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

  5因式分解的結果必須進行到每個因式在有理數範圍內不能再分解為止.

  整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多準備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。

  初中數學學習方法

  一、閱讀理解目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關係,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關係、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。

  二、提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。

  三、有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。

  初中數學學習建議

  一、制定切實可行的計劃,家長與孩子一起討論,合理的羅列出完成某些要事的時間段及要達到的目標。

  二、數學學習過程中,要有一個清醒的複習意識,逐漸養成良好的複習習慣,從而逐步學會學習。數學複習是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題包括基本圖形、影象等,典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為基本問題;要反思錯誤,找出產生錯誤的原因,訂出改正的措施。

  三、數學不等於做題,千萬不要忽視最基本的概念、公理、定理和公式,寒假裡要把已經學過的教科書中的概念整理出來,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。

  其次,數學需要實踐,需要大量做題,但要“埋下頭去做題,抬起頭來想題”,在做題中關注思路、方法、技巧,注重發現題與題之間的內在聯絡,要“苦做”更要“巧做”,絕不能“傻做”。在做一道與以前相似的題目時,要會通過比較,發現規律,穿透實質,以達到“觸類旁通”的境界。此外,大家在平時做題中就要及時記錄錯題,還要想一想為什麼會錯、以後要特別注意哪些地方,這樣就能避免不必要的失分。如果試題中涉及到你的薄弱環節,一定要通過短時間的專題學習,集中優勢兵力,攻克難關,別留下陷阱。

1.初中數學基礎知識點總結

2.初一數學上冊知識點複習梳理歸納

3.中考數學知識點總結

4.初中數學三年的知識點歸納

5.初一數學知識歸納總結有哪些

九年級數學上期末測試卷蘇教版
初三數學上期末調研測試卷及答案
相關知識
初中數學知識點歸納整理
九年級上冊數學知識點歸納整理
九年級上冊數學知識點歸納整理
初一到初三數學知識點歸納有哪些
初一到初三數學知識點歸納總結
初三數學知識點歸納人教版
初中化學知識點歸納總結
初中化學知識點歸納有哪些
初三數學知識點歸納有哪些
初二數學知識點歸納